Parallelization of Mutual-Information based Registration in the ITK Toolkit using
CUDA and TBB

Abstract

General purpose computation on GPUs (GPGPU) has been galrigh popularity in many fields of research in
recent years. However, not many studies have been reportaddical image processing. Medical image processing
can be one of the most time critical research areas becauastgfocessing is a key success factor during surgical
operations.

In this paper, we parallelized one of the registration aligfoms from ITK (Insight Toolkit from National Library
of Medicine) on the GPU and CPU. We implemented CUDA and TB8ores of a mutual-information based
registration application, which can be directly used byeathisers. We implemented four different versions of GPU
code and one TBB code. Our results showed that the best aptinf8PU code can achieve 14.61x speedup in the
kernel itself and up to 5.91X speedup on the entire appticatiThe TBB version of the code also shows 5.28X

speedup in the kernel and 3.43X speedup for the applicaomga 8-core processor.

1. Introduction

The computing power of GPUs has been increasing rapidlymasfew years. NVidia’s GTX280 architecture [1]
provides 933 Gflop/s with 240 cores, while Intel's next gatien processor will support more than 900 Gflop/s.
To take advantage of these high computing power, more and programmers are interested in using GPUs for
other computing applications. Furthermore, with the idtrction of a new programming language for GPUs, such
as CUDA [15], porting of highly-parallel sequential codatoithe GPU has started from various areas of research
and computationally-intensive applications.

Not much GPGPU work is evident in the areas related to Medilnafje processing. However, there is no doubt
that medical image processing area is one of the most tinieatind important areas, especially during the surgical
operations. Considering the high ratio of GPU performandié¢ costs, the potential roles of GPUs in dwtual
operative rooms in the hospitals is not unrealistic.

In order to carry out the GPGPU movement into the medical fieldito generate a high impact from paralleliza-

tion, ITK (Insight Toolkit from National Library of Medicia) is chosen for its completeness as an application and the



large audience of users worldwide. The ITK Toolkit can bad#d into two fields; segmentation and registration.
Segmentation is the process of identifying and classifgingmage data. For medical images, this segmentation
process refers to locating tumors and other pathologiesth®mther hand, registration is the process of aligning
between two images of multiple dimensions to combine théuligdgormation. Two 3D images can be different in
their scale of the pixel, and the orientation with respeaaoh other (e.g., CTvs. PEF).

In our work, a highly used mutual-information based imaggsteation application called MultiResMIRegistra-
tion is picked for the parallelization on the GPU and on thé&JGRing Intel's TBB library [10]. The details of the
application are discussed in the subsequent sections.

We implemented four different versions of GPU which varyheit optimization levels. We also compared the
GPU results with the CPU multithreaded version using TBBalifp on an 8-core machine. 14.61X speedup is
achieved only for the kernel, and the corresponding apidicaspeedup of 5.91X is achieved for this registration
application in the ITK Toolkit on the GPU. The TBB version pides 5.28X speedup for the kernel itself and 3.43X
speedup for the same application.

We found out two major difficulties in parallelizing ITK ugirCUDA. First, it is the highly modularized imple-
mentation of the ITK Toolkit where each function is procaegsnly a small subset of data. Secondly, it is the highly
object-oriented programming environment where each fands frequently defined in other classes with virtual
function calls and inheritances. Both increase the conitpleX the programming and reduce the benefit of using
the GPU.

This is the first work which directly parallelized the appliion from thecompletaoolkit in use. This has several
advantages compared to parallelizing a kernel only coimgijust the targeted algorithm since from our results the
users can directly benefit from the performance improvemBmis work sets the first step towards started GPGPU

movement for the ITK Toolkit [22].

2. Background

ITK (Insight Segmentation and Registration Toolkit) [22in open-source software system that employs leading-
edge segmentation and registration algorithms in twogthrel more dimensions. The concepts of registration and
segmentation are discussed in details in the following gragghs. ITK is powerful in processing many kinds of
images where most file types and multiple dimensions of imdge., 3-dimension and more) are supported. Not

only familiar image processing algorithms are provided, IBK is equipped with several algorithms which can

1Computer Computed tomography (CT)
2positron emission tomography (PET)



process clinically valuable operations between two 3D iesaghich can vary in the scale of the pixel (i.e., CT and
MRI) and alignment (i.e., one image is rotated comparedherpt The ITK toolkit is open-source which supports
cross-platform by using CMake [4] to manage the compilapiorcess. It provides a wrapping process (Cable [3])

to interface between C++ and programming languages suchla3ala, and Python.

2.1. Segmentation

The ITK Toolkit can be divided into two fields; segmentatiardaegistration. Segmentation is the process of
identifying and classifying data found in a digitally samglrepresentation. In other words, an image is partitioned
into multiple regions for a better analysis of the image. rBegtation in the medical imaging area provides many
benefits such as locating tumors and other pathologies. fd#ges several segmentation algorithms such as region-
growing [9]. For region-growing, the desired point in an geds selected and the region associated with the point

iteratively grows by comparing the intensity of the neighbg pixels.

2.2. Registration

Registration [8] is the process of determining a transfaéionathat maps points from one image to points in
the other image. Images can be multi-dimensional and theyvagy in the pixel scale. For example, a typical
CT image has a pixel size in the order of 1 millimeter, whilg/gical PET image is in the order of 5 millimeters
to 1 centimeter [9]. For this reason, a naive image mappidignat simply work well at the pixel granuality of
images. Thus, prior to registration, the pixel values amveded into theactual spatial coordinates by using the
pixel size information provided from the user. Then, thas&gtion process is carried out in the actual space without

considering the scaling factor associated between twoésag

Figure 1. Registration between CT and MRI 3D images by using M ultiResMIRegistration Algorithm [13]

Figure 1 illustrates a registration process on the two 3Mitimmages. The first image is calledovingimage,

while the second image fixedimage. Note that those images not only differ in the numbgmixdls, but differ in



pixel scales as well (i.e., CT, MRI). When registration isrigal out between these two images, the output containing
the information of how the image should be rotated and tededlis produced. Then, the images can be aligned
and the information from both images is obtained as showrénthird image. Transformation and combined
information obtained from the registration process haversd benefits in surgical operative environments where

multiple imaging devices produce different types of ousput

2.3. Registration Framework in ITK
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Figure 2. Registration Framework [9]

Figure 2 shows the high-level view of the registration pescevhich is represented by six blocks. A structural
modular approach [6] is chosen by ITK such that programmamsboose a desired algorithm or technique for each
block. Two blocks on the left-side represent the input insaghich are moving and fixedvietric represents the
guantitative criterion which specifies how well the movingaige has transformed to fit the fixed image [9]. Several
algorithms available for th#letric in the ITK toolkit include (1) mean Squares, (2) patternisiey, and (3) mutual
Information. Interpolatoris used to evaluate image intensities at non-grid positjioes when an image moves or
rotates, a computed pixel location may fall between gridsictvis a common technique in the image processing
field. Since a value of thiletric represents how well two images are aligned, the purposee@iimizerblock is
to search for the parameters of fhmnsformwhich optimizes thdVietric. Given the parameters fro@ptimizer the
moving image is transformed by tiieansformblock. Some of the optimizers available in the ITK toolkitinde
(1) gradient descent, (2) conjugate gradient, and (3) eegtép gradient descent. Detailed explanation of the metri

and optimizers can be referenced by [8][9].

2.4. Viola-Wells Mutual-Information Metric

For theMetric block in Figure 2, Mutual-information based metric basedtmwork by Viola and Wells [23]

is chosen for our work. One primary reason is that the naiverrsgiuares metric between two images that differ

3Mutual-information based registration is in the categdryigid registration. Output contains a rotate and transfanatrix



in the modality simply will not work. However, by using theasistical information between image intensities as
random variables, this metric is able to assess the imagasdrhigher level. It is a very general and powerful
statistical metric that can work on the images that diffahmresolution and modality. However, since this metric is
calculating the criterion stochastically, the values atertoisy to work with a simple, less computationally inteasi
Optimizer[9]. Thus, the optimizer frequently used with the mutudbimation based metric is callgg@radientDe-
scentOptimizewhich adjusts the transform parameters (i.e., values gfutiuhatrix) in the direction of the gradient

of the metric. This comes with a highly increased computatiost from the metric block. Because it needs to
provide not only the metric values as criteria, but the deiwe values of the metric values for the optimizer as well.
Additionally, how much the optimizer updates the transf@amameters depends on the user specified learning-rate
values. If the specified learning-rate values are too smegistration will not work between images that are too far
off. However, if the learning-rate values are too largeigtegtion will not produce parameters that match the images
in fine detail. Due to this nature of mutual-information bédsegistration, the registration process is first carried ou
with high learning-rate values. Then, the same regisimgifocess is repeated again with lower learning-rate values
for the fine-control. For our experiment, this process igeted five times (i.e., No. of Multi-Resolutions in Table 2)
with decreasing learning-rate values in series. For eauimileg-rate, the optimizer updates the parameters for the
iteration€ that the user specifies. Thus, the computation cost of thimidnformation based registration is not

only increased due to the additional derivative calcufatiut also from the repeated sets of the experiment.
3. GPU Implementation
3.1. Profiling MultiResMIRegistration

By executing the MultiResMIRegistration application i tiTK Toolkit which has the Mutual-Information based
registration and GradientDescentOptimizer mentionedéngrevious section, the profile data obtained by GNU
Gprof 2.17.50.0.6 version [7] shows that tBetValueAndDerivative() function takes up about 11.31% of
the total execution time. However, this profiling data is aoturate since Gprof does not profile multithreaded
applications correctly under certain kernels such as Lj2d} (i.e., Gprof only profiles the main thread). Manual
profiling shows that th&etValueAndDerivative() function is invoked for everijteration discussed in Sec-
tion 2.4. For the BW2.5K input where the number of iterations is 2500, the tatabked number of the function
is equivalent to 12500 after multiplying by the number of khelsolutions in Table 2. A single invocation of this
function takes about 2100 microseconds, andatb@mulatedexecution time of this function over the entire exe-

cution is 26.81 seconds. Since the total application ei@ttime is 32.59 seconds, the percentage of this function

“Iterations, No. Multi-Resolutions are specified in the Eab|



execution time to the application execution time is 82.3%&2 / 32.59). This function takes a big portion of the
total execution time, because it is invoked for every iierato provide both the metric and the derivative value to
the optimizer. When the Amdahl’s law is applied to find the egpound of the speedup, the best achievable speedup

is around 5.63x (32.59/(32.59 - 26.81)).
3.2. Code Structure

Since theGetValueAndDerivative() function takes a significant portion of the total executimne, this
function is the target of parallelization. The code struetaf this function is illustrated in Figure 3. There are
three for-loops in the function including one outer foryfo@nd two inner for-loops. This nested for-loop structure
calculates both the metric value and the derivative valuef@ function invocationaiter andbiter are the
C++ iterators on the portion of the image. The first innerlémp calculates metric values and the average of those
metric values for the second inner loop, which then comptlteslerivative values for the optimizer. There is one
function call between two inner for-loops which is used togaa derivative calculation. The numbers of iterations

for both inner and outer loops are dynamically found forladl inputs sets, which are 50s for both loops.

289: void MutualinformationimageTolmageMetric::GetVal ueAndDerivative()
{
339: for( biter = m_SampleB.begin(); biter != bend; ++biter )
{
346: for( aiter = m_SampleA.begin(); aiter != aend; ++aiter )
{
}
380: this->CalculateDerivatives(( * biter).FixedlmagePointValue, derivB);
384: for(aiter = m_SampleA.begin(),aditer = sampleADeriv atives.begin(); aiter != aend; ++aiter,++aditer)

{
}

414; } /lend outer for-loop

Figure 3. Code structures in the  GetValueAndDerivative method
3.3. Naive method

Implementing theGetValueAndDerivative function in CUDA requires parallelization of either the eut
for-loop, or the individual parallelization of the two inméor-loops. The function call that is between the two
inner for-loops is found to be difficult to parallelize siniténvokes several other hierarchical and virtual function

calls defined in different classes. Therefore, two sep@ZatbBA kernels are written for each inner loop (Line 346,



384) for the first GPU version. The functions which were orédly inside the inner-loops are also implemented
in CUDA. The number of for-loop iterations is dynamicallyuftd by calling thesize()function from the following

objects: m.SampleA andm.SampleB . The difficulty with theaditer iterator is that it traverses a structure
which varies in the number of elements. For this case, théqmanr fixed number of elements is used for allocating
the two-dimensional data structure on the GPU. The perfoamaf parallelizing the inner for-loops is discussed in

Section 5.

3.4. Higher level parallelization

Not only the workload is small from the parallelization of the inner for-loopsi ive overhead of calling two
CUDA kernel calls for each outer for-loop iteration is quitigh. Because for each CUDA kernel invocation,
the GPU memory is allocated and the data from the CPU is cdpiddle GPU DRAM memory. Hence, this
implementation of parallelizing the two inner-loops is ywémefficient. As a result, the parallelized execution time
on the GPU is significantly worse than the original CPU varsi®herefore, in order to increase the workload for
the GPU, and to reduce the number of kernel callsptiterfor-loop has to be parallelized.

We found out that, the function call that is in between twoeintoops isindependenfrom the outer loop code.
The reordering process of the independent function toifawlthe parallelization process is illustrated in Figdire
Note that this optimization can be applied to the originabkian without using the TBB and the GPU.

void MutuallnformationImageTolmageMetric:GetValueAndDerivative()

{

for( biter = m_SampleB.begin(); biter != bend; ++biter )
{

for( aiter = m_SampleA.begin(); aiter != aend; ++aiter)

{
.

this->CalculateDerivatives( (*biter).FixedImagePointValue, derivB );

for( aiter = m_SampleA.begin(), aditer = sampleADerivatives.begin(); aiter != aend; ++aiter, ++aditer )

{
.

Figure 4. Moving the independent function to the outside for -loop

5The amount of computed work per a GPU kernel invocation



As a naive GPU implementation, each iteration of the outep lis assigned to each GPU thread. This imple-
mentation results in only one CUDA block which does not makadlaise of the computational power of the GPU.
However, the main significance of this outer loop paralilian is that the parallelization task on the GPU is facil-
itated by reordering the independent function call. Thichasism increases the GPU workload per invocation in
comparison to the inner loop parallelization version, atlices the number of GPU kernel invocations by half.

For parallelizing the outer loop, all the data structureseased are individually allocated on the GPU, and the
contents of those structures are copied to the GPU DRAM mgtnocallingcudaMemcpy API. The function calls
resided inside the loop structure are converted to CUDA bydeppropriately inlining the mathematical operations.
Figure 5 provides the CUDA call interface (i.e., wrapperdiion calf) which shows several data structures involved
in the computation of the metric and derivative value. Th&adgpes includingpt _aiter _derivative and
pt _biter _derivative are pre-computed as the result of the algorithmic changediomeu previously. The
2-dimensional data types which vary in the number of elemard appropriately created.

The performance result from this GPU parallelization ofdbiéer loop is indicated b@uterLoopin Table 3.

gpu_loop(float * pt_aiter_FixedImageValue,
float  *pt_aiter_MovinglmageValue,
int num_aiter_elements,
float  *pt_biter_FixedlmageValue,
float  *pt_biter_MovinglmageValue,
int num_biter_elements,
float m_FixedlmageStandardDeviation,
float m_MovinglmageStandardDeviation,
float m_MinProbability,
float  *pt_output_values,
float  *pt_aiter_derivative,
float  *pt_biter_derivative,
int DIM_DERI);

Figure 5. The original function call interface for the GPU
3.5. Optimizations

In order to achieve a better performance, it is necessapdiace the effective latency of memory operations. One
way is to reduce the number of memory requests by changinglgiogithm. An alternative method is to reduce the
effective latency by using caches available on the GPU [01, & the context of CUDA-enabled NVidia GPUs,
the software managed cache (i.e., shared memory) is usehd values are reused. However, if the data is not
reused and the location of the data accessed is irregulag tiee shared memory can not effectively improve the

performance. Furthermore, using caches (software-madrezaEhe) increases the complexity of programming.

®Wrapper function is defined in a separate .cu file. Actual CU@#el is invoked from this function.



Table 1. Data access using an offset

Data Offset Pointer
0-49 aiterFixedlmageValue
50-99 aiterMovingimageValue
100 - 149 | biterFixedlmageValue
150 - 199 | biterMovingimageValug
200 - 549 aiter derivative
550 - 899 biter derivative

3.5.1. Constant Memory When it is not applicable to use the software-managed shaesdory due to irregular
indexing of data that is accessed only once, the hardwarageanconstant cache [16] can be used instead. 64KB
constant cache is available for 8800GTX (8KB cache per SH). [& theGetValueAndDerivative function,

the read-only derivative values indexed Agliter iterator in Figure 3 are chosen as candidates. They arecttpie
the constant cache before the GPU kernel invocation. Dépgrh the patterns of the data accesses, the latency
of a load is reduced when it is a cache hit. Hence, using thetanhmemory is better than naively accessing the
global memory. The GPU implementation which uses the cohst&che for the derivative values is indicated by

OuterLoopConsin Table 3.

3.5.2. Reducing the number of DMA operationsFigure 5 shows several data structures indicated by therftpat
data type pointers. The previous GPU implementations sacugerLoopor OuterLoopConsallocates separate
data structures, and a separatelaMemcpy API is called for each data structure. However, this medmani
requires extra driver overhead for eatidaMemcpy operation. Thus if it is applicable, it is better to creatdyon
one data structure and have only one memory copy operatioa d&sired data elements are accessed by using an
appropriate offset in the GPU kernel as illustrated in TableNote that in Figure 6, all the input data structures

(excluding the data that were copied to the constant cacheyombined into thelata _struct  pointer.

int gpu_loop(float *data_struct, /I Combined data structure
int data_struct_size,
float  *pt_output_values,
int output_size,
int num_aiter_elements,
int num_biter_elements,
float m_FixedimageStandardDeviation,
float m_MovinglmageStandardDeviation,
float m_MinProbability,
int DIM_DERI,
int begin_iter,
int end_iter)

Figure 6. The modified function call interface for the GPU



3.5.3. Work granuality change Since our baseline processor is a multithreaded procelsonemory latency can

be hidden by switching to a different available thread (oraug of threads in CUDA) after issuing memory requests

for one thread (or a group of threads). To overlap as many asamerequests, it is essential to generate as many
threads as possible[20], so that it is more probabilisticaee available groups of threads waiting for an execution.
However, unlike typical data intensive applications theajuire many threads, the registration algorithm that we are
parallelizing only has 50 iterations for the outer loop (Tireer loops also have only 50 iterations). When each GPU
thread is assigned to each iteration of the outer loop, thérman number of threads to be invoked on the GPU is

only 50. The consequence is that only one SM out of 16 SMsligedifor the algorithm in 8800GTX GPU.

To overcome this under-utilization problem and to incredmenumber of threads, the granuality of the work
per thread has to be changed. Rather than assigning eaatioiteof the outer loop to each thread, each CUDA
block takes each iteration of the outer loop, and each thpeackesses each iteration of the inner loop. After that a
synchronization instruction is issued between the tworihm@ps to run a reduction algorithm safely. For a faster
execution, the shared memory is used during the reductigrtalBng this approach, the number of threads is dra-
matically increased from 50 threads to 2500 threads. Thiseduce the memory latency penalty also. Furthermore,
it is more scalable. Because in the previous approach, arybtock is used and the number of threads inside a
block can not go over 512 (512 is the limitation imposed by @8&thitecture/CUDA programming). The GPU
implementation which uses this new algorithm, the constarory, and combining the data transfers is indicated

by OuterLoopOpti in Table 2.

Thread |[| Thread | | Thread || Thread ||| Thread

Thread | | Thread || Thread || Thread | | Thread
- - - - - (R I

Block Block

Thread || Thread ||| Thread || Thread ||| Thread

(R

Block Block Block

Naive implementation: Work granuality change
50 Threads, 1 Block 50 Threads, 50 Blocks
(OuterLoop) (OuterLoop_Opti)

Figure 7. Work granuality change that generates more number of threads
4. Methodology

For the ITK Toolkit, version 3.10.1 released in 2008 is usadlie experiment. Nvidia QuadroFX5600 [2] GPU

and NVCC version of 2.1 are used to produce the results. Alllittraries and applications in the ITK Toolkit



Table 2. Inputs to MultiResMIRegistration

Input Name 3D Fixed Volume 3D Moving Volume No. Multi-Resolutions | No. Iterations Source

BrainWeh10.0K T1 (6.78MB) [181x217x180]| T2 (6.78MB) [181x217x180] 5 10000 ITK Toolkit
BrainWeh5.0K T1 (6.78MB) [181x217x180]| T2 (6.78MB) [181x217x180] 5 5000
BrainWeh?2.5K T1 (6.78MB) [181x217x180]| T2 (6.78MB) [181x217x180] 5 2500

CTtoMP_102.10.0K | CT (24.50MB) [512x512x49]| MP (16.00MB) [256x256x128] 5 10000 Patient 102 [5]
CTtoMP.102. 5K CT (24.50MB) [5612x512x49]| MP (16.00MB) [256x256x128] 5 5000

CTtoMP.1022.5K | CT (24.50MB) [512x512x49]| MP (16.00MB) [256x256x128] 5 2500

CTtoMP_109.10.0K | CT (20.50MB) [512x512x41]| MP (16.00MB) [256x256x128] 5 10000 Patient 109
CTtoMP.109.5K CT (20.50MB) [5612x512x41]| MP (16.00MB) [256x256x128] 5 5000

CTtoMP.109.2.5K | CT (20.50MB) [512x512x41]| MP (16.00MB) [256x256x128] 5 2500

T1toPD009.10.0K | T1 (3.00MB) [256x256x24] PD (3.00MB) [256x256x24] 5 10000 Patient 009
T1toPD.009.5.0K T1 (3.00MB) [256x256x24] PD (3.00MB) [256x256x24] 5 5000

T1toPD.009.2.5K T1 (3.00MB) [256x256x24] PD (3.00MB) [256x256x24] 5 2500

are compiled withReleaseversion (-O3), and GPU codes are also compiled with -O3. Barparison to GPU
performance, a CPU multithreaded version using Intel’'s TBH library (Version 2.1) is implemented and executed
on a 8-core machine. The machine setting is as follows, 2esdcB7 GHz Quad-core Intel Xeon (Total 8 Cores),
4MB L2-cache, 8GB RAM and QuadroFX5600 GPU. There are twatigpurce files in each experiment shown
in Table 2. BrainWeb input is included in the ITK Toolkit. Irder to obtain more data sets which vary in the
file sizes and in the types of images, data sets fRetrospective Image Registration Evaluation Proj&gtare
used in the experiment. Table 2 shows the actual data frompdhents indicated by the patient number. Types
of images are shown in the second and third columns indidagdeixed and Moving volume. Different types of
images indicated by T1, T2, PD, and MP are generated by gdtifferent timing parameters of the MRI scanner.
For those configuration details on the images, these sooarele referenced [18, 12].

Table 3 shows the lists of the CPU and GPU implementati@réginal implies the original ITK Toolkit code
without any modifications. This is not necessarily a sena@cetion since some portions of ITK code are already
parallelized [9]. IninnerLoopimplementation, each inner loop is separately paralldlzg CUDA while the outer
loop code is running on the CPU. @uterLoop the outer loop is parallelized by CUDA after making algmmiic
changes to the code. This is a pure parallelization witheirtgiany optimizations. I@uterLoopConst read-only
data such as derivative values are copied to the constam cexcthe GPU. '®©uterLoopOpti, there are three opti-
mizations: (1) The granuality of the thread is changed tegae more number of threads. (2) The number of DMA
transfers between CPU and GPU is reduced. (3) The constanbrpés used. Th&ernellowerboundfunction is
inserted to measure the GPU kernel overhead. The detaikmlipions on these different GPU implementations

are discussed in Section 3.



Table 3. Experiment Configuration

Implementation Details
Original Original ITK execution on 8 Core machine
InnerLoop Parallelized two inner-loops in two separate GPU Kernels
OuterLoop Parallelized outer for-loop after making algorithmic chan
OuterLoopConst Const memory is used for read-only values
OuterLoopOpti Work granuality change for GPU thread. Further optimizeddsjucing number of loads and reduction.
Kernellowerbound GPU kernel implement ion commented out. Shows kernel oeetireother GPU implementations

5. Results

Figure 8 shows the average execution time of a single iniwtaf the GetValueAndDerivative() func-
tion. The value for the CPU and GPU is obtained by dividingdhmulated execution time of the function by the
total number of invocations. Note that the total number @baations is obtained by multiplying the number of
Multi-Resolutions and the number of Iterations in Table 2guife 8 shows that the CPU execution time is 1527

microseconds, but it only takes about 104 microsecondseGiU, resulting in 14.61x speedup.

I 11.48 usec
34.31 usec
1527.31 usec 104. 52 usec 41.95 usec
14.14 usec
12.63 usec
CPU time per invocation GPU time per invocation

(OuterLoop_Opti)

Figure 8. The averaged outer-loop execution time per GetVal ~ ueAndDerivative()

This result from Figure 8 implies that the benefit of runnimgtbe GPU increases as the number of GPU kernel
invocation increases. Figure 9 shows the application g@k@tdime on the various inputs specified in Table 2.
The first observation is that as the number of invocationseemes for a given input (i.e., 2.5K, 5K, and 10K), the
execution time on both GPU and TBB implementations decsease

For the GPU implementations, the execution time decreasé®f as more optimizations are appli€lter.Const
which uses the constant memory shows a negligible impromeocmenpared to the naive GPU implementation. How-
ever,Outer Opti shows an average of 41.5% performance improvement oveédier Constversion, approaching
within 7% of theKernelLowerbound The GPU implementation indicated bynerLoopis not included in the result

figures due to the very severe performance degradation ad than 800%.
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Figure 9. Application Execution times. Note that Innerloop data is not shown due to severe slowdown

In comparison to 14.61x speedup on the nested loops paatldby the GPU, the effect on the total applica-
tion speedup ranges from 3 to about 6 times as shown in FigureThe best speedup of 5.91x is obtained by
T1_PD_009.10K input’. The GPU speedup is 42% faster than the TBB implementatich@B-core machine on
average. Figure 11 shows the GPU speedup of the loops (aatiéalueAndDerivative() function. The best
speedup of 14.749x on the loop is achieved byPI1 009 10K input, where this input results in the best speedup
on the application as well. The TBB speedup across the iffputskernel itself is 5.13X and for the application is
3.43X.

For an error analysis, each value of the transform matrixthadffset matrix¥ generated by the original CPU
version is compared with all the GPU implementatio@PU outputin Table 4 shows the output element which
produces the largest deviation from the correct output.eNloat this value is selected after comparing across all
the GPU implementations (i.e., NoConst, Const, Ofitprrect CPU outpushows the corresponding correct output

value, andabsolute value erroshows the absolute difference between the correct valu¢hen@PU output. The

results show that all the errors are less than 0.05 acrogseahput values.

"Note that the upperbound of 5.63X in Section 3.1 is obtainedding BrainWeb2.5K input
8Registration outputs: Transform matrix rotates a movinggm Offset matrix moves a moving image in xyz directions



Table 4. The largest selected GPU Errors for 5K (No.lteratio  ns) input

Input BrainWeh5.0K | CTtoMP.1025K | CTtoMP.1095K | T1toPD.009.5.0K
GPU output 0.14079 29.5355 52.9688 0.000111
Correct CPU output 0.14093 29.5393 52.9299 0.000112
[ Absolute value error] 0.00014 | 0.0038 | 0.0389 | 0.000001 |

8.00

B Outer_NoConst
Outer_Const

® Outer_Opti

H Outer_TBB

Speed Up over Original

m Kernel_Lowerbound

Figure 10. Speedup over the Original implementation. Note t hat Innerloop data is not shown due to severe slowdown

6. Discussions
6.1. Object-oriented code

ITK source code is modularized in functionality wheneveplagable. It is based on the template programming
to incorporate different kinds of image inputs. Any funati@ithin the ITK toolkit is likely to invoke other methods
which are defined in other classes. The difficult decisiosesriwhen porting the code into another platform such
as GPUs. Because the amount of work per function call is mgelanough to gain an advantage since additional
overhead exists from DMA data transfers. This type of pnobieakes a parallelization implementation even more
challenging.

Another issue which prevents achieving a better performamcelated to many invocations of a small function
body. When these functions are parallelized on the GPU ,gHemnance improvement is not significant because the
driver overhead and extra time associated with DMA datasfeas build up for each GPU invocation. In comparison,
these extra overhead does not exist if all the function salbmbined and only one invocation exists. Unfortunately,

due to the highly-modularized implementation style in IThere are high number of invocations for each function.
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Figure 11. Outerloop Speedup over Original (Kernel)
To overcome this performance degradation factor, paizdliébn on the codes that are in the higher-level is necgssar

6.2. More optimizations

The speedup of the GPU can be further improved by skippingn@aint allocation and deallocation between each
GPU kernel invocation. One way to implement this mechanisto store the global pointer that points to the GPU

memory between invocations of the kernel. We plan to contthigtstudy in our future work.

7. Related Work

There have been several recent works which parallelizenldiind applications in ITK. The work by Ohara and
Yeo [17] implemented a mutual-information based registratlgorithm on the Cell Broadband Engine proces-
sor [19]. Parallelization with the Cell SIMD instructionsopluced the speedup of 4.5x. However, that speedup did
not include the file 1/0O time. On contrast, we developed thelpeization algorithm on the original, publically
available ITK source-code release [22] thereby our GPU émgintation being directly applied to the ITK toolkit
used by the community users.

Muyan and Owens implemented a deformable registratiorritthgo on the GPU [14]. But the algorithm paral-
lelized in their work is in the other category of the regititra (Not rigid registration), and the source code paral-
lelized is in C-code containing only the algorithm. In comigan, to the best of our knowledge, our work is the
first work which directly parallelizes the registration afghm from the application suite in use, and optimized the
GPU implementation despite highly object-oriented C++ecedvironment, and small computation work per each
function call due to the highly-modularized style of implemtation. Other related works include parallelization of
the filters by Jeong [24]. In his work, basic ITK image filteteb as mean, gaussian, median, and anisotropic dif-
fusion filters are parallelized by CUDA, and the speedupsntegd range from 25x to 140x. These improved filters

can enhance the performance indirectly, especially theriditgns in the segmentation category.



8. Conclusions

This paper parallelized the mutual-information basedstegiion application from a widely used medical imaging
toolkit called ITK (Insight Toolkit). This work is signifiga for two reasons. One is that this work parallelized the
registration algorithm from the complete software in usat only the registration algorithm kernel itself. The
outcome of the work could be direct applicability and havehagh impact to the community users worldwide.
Secondly, this work extracted out the performance on the @&Bid such highly modularized, object-oriented,
and template-based source code. ITK source code is markdasio highly that any given work is divided into
many different function calls, and the style is very objedented that those function calls are often virtual fumiati
calls and defined in different classes with different lev&isnheritances. Under these circumstances, this work
implemented a portion of a highly used Mutual-Informati@séd registration application on the GPU using CUDA,
achieving 14.61x speedup on the kernel and 5.91x speedupeaapplication. We also show that using TBB the
speedup of the kernel itself is 5.28x and the speedup of thkcagion is 3.43x. This work contributes to one of
the most time critical surgical operative environments all as a faster 3D image processing and analysis by the
associated users.
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10. Appendix

This section provides information how to integrate CUDAhe 1TK Toolkit. ITK is configured by CMake [4]
which is a cross-platform and open-source build system.ebeing on the platform used, CMake generates make-
files for Linux, and workspaces for Visual Studio in Window#e user can change the compilation settings only by
modifying theCMakeLists.txt file, not by directly changing the contents of the makefileherworkspace. For
integration of the CUDA code and the ITK Toolkit, one optiertd® modify theCMakeLists.txt file to include
the NVCC compiler and the associated CUDA wrapper functigrt.the easier method for integrating is to generate
a library of the GPU code, and simply link that library in thi¥i@ke compilation configuration.

A CUDA wrapper functiongpu _loop.cu is created as a separate file, so that it can be compiled by tisn
NVCC compiler. The wrapper function contains all the neags&PU API calls such asudaMemcpy as well as
the kernel source. To generate a static library of the GPl¢ b following Linux commands are executed. Note
that the generated libratijpgpu.a  and the corresponding header file containing the functiatadation need to
be copied to the appropriate directory.

nvcc -c -O3 gpu_loop.cu -I/$INCLUDEPATH -L/$LIBPATH -I$LI B
ar rcs libgpu.a * .0

cp libgpu.a "/GPU_Codes/Library

cp gpu_function.h “/GPU_Codes/Include

Figure 12. Linux commands for generating static GPU library

The information of the GPU library and the correspondingdeedile needs to be updated@MakeLists.txt
as shown in Figure 13. The interface @Makelist.txt is straightforward. The directory which contains the
header file is added with tHBICLUDE DIRECTORIEScommand. Similarly, the directory that contains the ligrar
is added with thedlINK _DIRECTORIEScommand, and theINK _LIBRARIES command is used to specify the
names of the library used in the application. Figure 13 shivsnclusion of the GPU library as well as the TBB
library.

After changes are made to tlidMakelist.txt file, and the GPU library is generated in the appropriateceire
tory, simply the left task is typing thmake command in the MultiResMIRegistration application folidethe ITK

Toolkit. Similar approach can be used in the other applcatihat use the CMake build system.
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PROJECT( MultiResMIRegistration )

INCLUDE_DIRECTORIES(/GPU_Codes/Include)
LINK_DIRECTORIES(/GPU_Codes/Library)
LINK_LIBRARIES(gpu)

INCLUDE_DIRECTORIES(/usr/local/cuda/include)
INCLUDE_DIRECTORIES("/NVIDIA_CUDA_SDK/common/inc)
LINK_DIRECTORIES(/ustr/local/cuda/lib)
LINK_DIRECTORIES("/NVIDIA_CUDA_SDK/lib)
LINK_DIRECTORIES("/NVIDIA_CUDA_SDK/common/lib)
LINK_LIBRARIES(cuda)
LINK_LIBRARIES(cudart)
LINK_LIBRARIES(GL)
LINK_LIBRARIES(GLU)

INCLUDE_DIRECTORIES("/Library/tbb21_200806050ss/i nclude)
LINK_DIRECTORIES("/Library/tbb21_200806050ss/buil d/
linux_em64t_gcc_cc3.4.6_libc2.3.4_kernel2.6.9 relea se)

LINK_LIBRARIES(tbb tbbmalloc)

Figure 13. Inserted configurations in CMakelist.txt for CUD A and TBB integration



