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Abstract

General purpose computation on GPUs (GPGPU) has been gaining high popularity in many fields of research in

recent years. However, not many studies have been reported in medical image processing. Medical image processing

can be one of the most time critical research areas because a fast processing is a key success factor during surgical

operations.

In this paper, we parallelized one of the registration algorithms from ITK (Insight Toolkit from National Library

of Medicine) on the GPU and CPU. We implemented CUDA and TBB versions of a mutual-information based

registration application, which can be directly used by other users. We implemented four different versions of GPU

code and one TBB code. Our results showed that the best optimized GPU code can achieve 14.61x speedup in the

kernel itself and up to 5.91X speedup on the entire application. The TBB version of the code also shows 5.28X

speedup in the kernel and 3.43X speedup for the application using a 8-core processor.

1. Introduction

The computing power of GPUs has been increasing rapidly overpast few years. NVidia’s GTX280 architecture [1]

provides 933 Gflop/s with 240 cores, while Intel’s next generation processor will support more than 900 Gflop/s.

To take advantage of these high computing power, more and more programmers are interested in using GPUs for

other computing applications. Furthermore, with the introduction of a new programming language for GPUs, such

as CUDA [15], porting of highly-parallel sequential codes into the GPU has started from various areas of research

and computationally-intensive applications.

Not much GPGPU work is evident in the areas related to MedicalImage processing. However, there is no doubt

that medical image processing area is one of the most time critical and important areas, especially during the surgical

operations. Considering the high ratio of GPU performance to the costs, the potential roles of GPUs in theactual

operative rooms in the hospitals is not unrealistic.

In order to carry out the GPGPU movement into the medical fieldand to generate a high impact from paralleliza-

tion, ITK (Insight Toolkit from National Library of Medicine) is chosen for its completeness as an application and the
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large audience of users worldwide. The ITK Toolkit can be divided into two fields; segmentation and registration.

Segmentation is the process of identifying and classifyingan image data. For medical images, this segmentation

process refers to locating tumors and other pathologies. Onthe other hand, registration is the process of aligning

between two images of multiple dimensions to combine the useful information. Two 3D images can be different in

their scale of the pixel, and the orientation with respect toeach other (e.g., CT1 vs. PET2).

In our work, a highly used mutual-information based image registration application called MultiResMIRegistra-

tion is picked for the parallelization on the GPU and on the CPU using Intel’s TBB library [10]. The details of the

application are discussed in the subsequent sections.

We implemented four different versions of GPU which vary in their optimization levels. We also compared the

GPU results with the CPU multithreaded version using TBB library on an 8-core machine. 14.61X speedup is

achieved only for the kernel, and the corresponding application speedup of 5.91X is achieved for this registration

application in the ITK Toolkit on the GPU. The TBB version provides 5.28X speedup for the kernel itself and 3.43X

speedup for the same application.

We found out two major difficulties in parallelizing ITK using CUDA. First, it is the highly modularized imple-

mentation of the ITK Toolkit where each function is processing only a small subset of data. Secondly, it is the highly

object-oriented programming environment where each function is frequently defined in other classes with virtual

function calls and inheritances. Both increase the complexity of the programming and reduce the benefit of using

the GPU.

This is the first work which directly parallelized the application from thecompletetoolkit in use. This has several

advantages compared to parallelizing a kernel only containing just the targeted algorithm since from our results the

users can directly benefit from the performance improvement. This work sets the first step towards started GPGPU

movement for the ITK Toolkit [22].

2. Background

ITK (Insight Segmentation and Registration Toolkit) [22] is an open-source software system that employs leading-

edge segmentation and registration algorithms in two, three and more dimensions. The concepts of registration and

segmentation are discussed in details in the following paragraphs. ITK is powerful in processing many kinds of

images where most file types and multiple dimensions of images (i.e., 3-dimension and more) are supported. Not

only familiar image processing algorithms are provided, but ITK is equipped with several algorithms which can

1Computer Computed tomography (CT)
2Positron emission tomography (PET)



process clinically valuable operations between two 3D images which can vary in the scale of the pixel (i.e., CT and

MRI) and alignment (i.e., one image is rotated compared to other). The ITK toolkit is open-source which supports

cross-platform by using CMake [4] to manage the compilationprocess. It provides a wrapping process (Cable [3])

to interface between C++ and programming languages such as Tcl, Java, and Python.

2.1. Segmentation

The ITK Toolkit can be divided into two fields; segmentation and registration. Segmentation is the process of

identifying and classifying data found in a digitally sampled representation. In other words, an image is partitioned

into multiple regions for a better analysis of the image. Segmentation in the medical imaging area provides many

benefits such as locating tumors and other pathologies. ITK provides several segmentation algorithms such as region-

growing [9]. For region-growing, the desired point in an image is selected and the region associated with the point

iteratively grows by comparing the intensity of the neighboring pixels.

2.2. Registration

Registration [8] is the process of determining a transformation that maps points from one image to points in

the other image. Images can be multi-dimensional and they can vary in the pixel scale. For example, a typical

CT image has a pixel size in the order of 1 millimeter, while a typical PET image is in the order of 5 millimeters

to 1 centimeter [9]. For this reason, a naive image mapping will not simply work well at the pixel granuality of

images. Thus, prior to registration, the pixel values are converted into theactual spatial coordinates by using the

pixel size information provided from the user. Then, the registration process is carried out in the actual space without

considering the scaling factor associated between two images.

Fig 2: Slice 7 from the practice patient MR-T1 volume (the fixed volume) Fig 3: Slice 7 from the CT-to-MR-TI registered image 
Figure 1. Registration between CT and MRI 3D images by using M ultiResMIRegistration Algorithm [13]

Figure 1 illustrates a registration process on the two 3D input images. The first image is calledmovingimage,

while the second image isfixedimage. Note that those images not only differ in the number ofpixels, but differ in



pixel scales as well (i.e., CT, MRI). When registration is carried out between these two images, the output containing

the information of how the image should be rotated and translated is produced.3 Then, the images can be aligned

and the information from both images is obtained as shown in the third image. Transformation and combined

information obtained from the registration process have several benefits in surgical operative environments where

multiple imaging devices produce different types of outputs.

2.3. Registration Framework in ITK
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Figure 2. Registration Framework [9]

Figure 2 shows the high-level view of the registration process which is represented by six blocks. A structural

modular approach [6] is chosen by ITK such that programmers can choose a desired algorithm or technique for each

block. Two blocks on the left-side represent the input images which are moving and fixed.Metric represents the

quantitative criterion which specifies how well the moving image has transformed to fit the fixed image [9]. Several

algorithms available for theMetric in the ITK toolkit include (1) mean Squares, (2) pattern intensity, and (3) mutual

Information. Interpolator is used to evaluate image intensities at non-grid positions(i.e., when an image moves or

rotates, a computed pixel location may fall between grids) which is a common technique in the image processing

field. Since a value of theMetric represents how well two images are aligned, the purpose of theOptimizerblock is

to search for the parameters of theTransformwhich optimizes theMetric. Given the parameters fromOptimizer, the

moving image is transformed by theTransformblock. Some of the optimizers available in the ITK toolkit include

(1) gradient descent, (2) conjugate gradient, and (3) regular step gradient descent. Detailed explanation of the metric

and optimizers can be referenced by [8][9].

2.4. Viola-Wells Mutual-Information Metric

For theMetric block in Figure 2, Mutual-information based metric based onthe work by Viola and Wells [23]

is chosen for our work. One primary reason is that the naive mean-squares metric between two images that differ

3Mutual-information based registration is in the category of rigid registration. Output contains a rotate and transform matrix



in the modality simply will not work. However, by using the statistical information between image intensities as

random variables, this metric is able to assess the images from a higher level. It is a very general and powerful

statistical metric that can work on the images that differ inthe resolution and modality. However, since this metric is

calculating the criterion stochastically, the values are too noisy to work with a simple, less computationally intensive

Optimizer[9]. Thus, the optimizer frequently used with the mutual-information based metric is calledGradientDe-

scentOptimizerwhich adjusts the transform parameters (i.e., values of output matrix) in the direction of the gradient

of the metric. This comes with a highly increased computation cost from the metric block. Because it needs to

provide not only the metric values as criteria, but the derivative values of the metric values for the optimizer as well.

Additionally, how much the optimizer updates the transformparameters depends on the user specified learning-rate

values. If the specified learning-rate values are too small,registration will not work between images that are too far

off. However, if the learning-rate values are too large, registration will not produce parameters that match the images

in fine detail. Due to this nature of mutual-information based registration, the registration process is first carried out

with high learning-rate values. Then, the same registration process is repeated again with lower learning-rate values

for the fine-control. For our experiment, this process is repeated five times (i.e., No. of Multi-Resolutions in Table 2)

with decreasing learning-rate values in series. For each learning-rate, the optimizer updates the parameters for the

iterations4 that the user specifies. Thus, the computation cost of this Mutual-Information based registration is not

only increased due to the additional derivative calculation, but also from the repeated sets of the experiment.

3. GPU Implementation

3.1. Profiling MultiResMIRegistration

By executing the MultiResMIRegistration application in the ITK Toolkit which has the Mutual-Information based

registration and GradientDescentOptimizer mentioned in the previous section, the profile data obtained by GNU

Gprof 2.17.50.0.6 version [7] shows that theGetValueAndDerivative() function takes up about 11.31% of

the total execution time. However, this profiling data is notaccurate since Gprof does not profile multithreaded

applications correctly under certain kernels such as Linux[21] (i.e., Gprof only profiles the main thread). Manual

profiling shows that theGetValueAndDerivative() function is invoked for everyiteration discussed in Sec-

tion 2.4. For the BW2.5K input where the number of iterations is 2500, the total invoked number of the function

is equivalent to 12500 after multiplying by the number of Multiresolutions in Table 2. A single invocation of this

function takes about 2100 microseconds, and theaccumulatedexecution time of this function over the entire exe-

cution is 26.81 seconds. Since the total application execution time is 32.59 seconds, the percentage of this function

4Iterations, No. Multi-Resolutions are specified in the Table 2



execution time to the application execution time is 82.3% (26.81 / 32.59). This function takes a big portion of the

total execution time, because it is invoked for every iteration to provide both the metric and the derivative value to

the optimizer. When the Amdahl’s law is applied to find the upper bound of the speedup, the best achievable speedup

is around 5.63x (32.59 / (32.59 - 26.81)).

3.2. Code Structure

Since theGetValueAndDerivative() function takes a significant portion of the total execution time, this

function is the target of parallelization. The code structure of this function is illustrated in Figure 3. There are

three for-loops in the function including one outer for-loop, and two inner for-loops. This nested for-loop structure

calculates both the metric value and the derivative value for one function invocation.aiter andbiter are the

C++ iterators on the portion of the image. The first inner for-loop calculates metric values and the average of those

metric values for the second inner loop, which then computesthe derivative values for the optimizer. There is one

function call between two inner for-loops which is used towards a derivative calculation. The numbers of iterations

for both inner and outer loops are dynamically found for all the inputs sets, which are 50s for both loops.

289: void MutualInformationImageToImageMetric::GetVal ueAndDerivative()
... {
... ...
339: for( biter = m_SampleB.begin(); biter != bend; ++biter )
... {
...
346: for( aiter = m_SampleA.begin(); aiter != aend; ++aiter )
... {
...
... }
...
380: this->CalculateDerivatives(( * biter).FixedImagePointValue, derivB);
...
384: for(aiter = m_SampleA.begin(),aditer = sampleADeriv atives.begin(); aiter != aend; ++aiter,++aditer)
... {
...
... }
...
414: } //end outer for-loop
... ...
... }

Figure 3. Code structures in the GetValueAndDerivative method

3.3. Naive method

Implementing theGetValueAndDerivative function in CUDA requires parallelization of either the outer

for-loop, or the individual parallelization of the two inner for-loops. The function call that is between the two

inner for-loops is found to be difficult to parallelize sinceit invokes several other hierarchical and virtual function

calls defined in different classes. Therefore, two separateCUDA kernels are written for each inner loop (Line 346,



384) for the first GPU version. The functions which were originally inside the inner-loops are also implemented

in CUDA. The number of for-loop iterations is dynamically found by calling thesize()function from the following

objects: m.SampleA and m.SampleB . The difficulty with theaditer iterator is that it traverses a structure

which varies in the number of elements. For this case, the maximum fixed number of elements is used for allocating

the two-dimensional data structure on the GPU. The performance of parallelizing the inner for-loops is discussed in

Section 5.

3.4. Higher level parallelization

Not only the workload5 is small from the parallelization of the inner for-loops, but the overhead of calling two

CUDA kernel calls for each outer for-loop iteration is quitehigh. Because for each CUDA kernel invocation,

the GPU memory is allocated and the data from the CPU is copiedto the GPU DRAM memory. Hence, this

implementation of parallelizing the two inner-loops is very inefficient. As a result, the parallelized execution time

on the GPU is significantly worse than the original CPU version. Therefore, in order to increase the workload for

the GPU, and to reduce the number of kernel calls, theouterfor-loop has to be parallelized.

We found out that, the function call that is in between two inner loops isindependentfrom the outer loop code.

The reordering process of the independent function to facilitate the parallelization process is illustrated in Figure4.

Note that this optimization can be applied to the original version without using the TBB and the GPU.

Figure 4. Moving the independent function to the outside for -loop

5The amount of computed work per a GPU kernel invocation



As a naive GPU implementation, each iteration of the outer loop is assigned to each GPU thread. This imple-

mentation results in only one CUDA block which does not make afull use of the computational power of the GPU.

However, the main significance of this outer loop parallelization is that the parallelization task on the GPU is facil-

itated by reordering the independent function call. This mechanism increases the GPU workload per invocation in

comparison to the inner loop parallelization version, and reduces the number of GPU kernel invocations by half.

For parallelizing the outer loop, all the data structures accessed are individually allocated on the GPU, and the

contents of those structures are copied to the GPU DRAM memory by callingcudaMemcpy API. The function calls

resided inside the loop structure are converted to CUDA codeby appropriately inlining the mathematical operations.

Figure 5 provides the CUDA call interface (i.e., wrapper function call6) which shows several data structures involved

in the computation of the metric and derivative value. The data types includingpt aiter derivative and

pt biter derivative are pre-computed as the result of the algorithmic change mentioned previously. The

2-dimensional data types which vary in the number of elements are appropriately created.

The performance result from this GPU parallelization of theouter loop is indicated byOuterLoopin Table 3.

gpu_loop(float * pt_aiter_FixedImageValue,
float * pt_aiter_MovingImageValue,
int num_aiter_elements,
float * pt_biter_FixedImageValue,
float * pt_biter_MovingImageValue,
int num_biter_elements,
float m_FixedImageStandardDeviation,
float m_MovingImageStandardDeviation,
float m_MinProbability,
float * pt_output_values,
float * pt_aiter_derivative,
float * pt_biter_derivative,
int DIM_DERI);

Figure 5. The original function call interface for the GPU

3.5. Optimizations

In order to achieve a better performance, it is necessary to reduce the effective latency of memory operations. One

way is to reduce the number of memory requests by changing thealgorithm. An alternative method is to reduce the

effective latency by using caches available on the GPU [11, 20]. In the context of CUDA-enabled NVidia GPUs,

the software managed cache (i.e., shared memory) is useful if the values are reused. However, if the data is not

reused and the location of the data accessed is irregular, using the shared memory can not effectively improve the

performance. Furthermore, using caches (software-managed cache) increases the complexity of programming.

6Wrapper function is defined in a separate .cu file. Actual CUDAkernel is invoked from this function.



Table 1. Data access using an offset

Data Offset Pointer
0 - 49 aiterFixedImageValue
50 - 99 aiterMovingImageValue

100 - 149 biterFixedImageValue
150 - 199 biterMovingImageValue
200 - 549 aiter derivative
550 - 899 biter derivative

3.5.1. Constant Memory When it is not applicable to use the software-managed sharedmemory due to irregular

indexing of data that is accessed only once, the hardware managed constant cache [16] can be used instead. 64KB

constant cache is available for 8800GTX (8KB cache per SM) [20]. In theGetValueAndDerivative function,

the read-only derivative values indexed byAditer iterator in Figure 3 are chosen as candidates. They are copied to

the constant cache before the GPU kernel invocation. Depending on the patterns of the data accesses, the latency

of a load is reduced when it is a cache hit. Hence, using the constant memory is better than naively accessing the

global memory. The GPU implementation which uses the constant cache for the derivative values is indicated by

OuterLoopConstin Table 3.

3.5.2. Reducing the number of DMA operationsFigure 5 shows several data structures indicated by the floating

data type pointers. The previous GPU implementations such as OuterLoopor OuterLoopConstallocates separate

data structures, and a separatecudaMemcpy API is called for each data structure. However, this mechanism

requires extra driver overhead for eachcudaMemcpy operation. Thus if it is applicable, it is better to create only

one data structure and have only one memory copy operation. The desired data elements are accessed by using an

appropriate offset in the GPU kernel as illustrated in Table1. Note that in Figure 6, all the input data structures

(excluding the data that were copied to the constant cache) are combined into thedata struct pointer.

int gpu_loop(float * data_struct, // Combined data structure
int data_struct_size,
float * pt_output_values,
int output_size,
int num_aiter_elements,
int num_biter_elements,
float m_FixedImageStandardDeviation,
float m_MovingImageStandardDeviation,
float m_MinProbability,
int DIM_DERI,
int begin_iter,
int end_iter)

Figure 6. The modified function call interface for the GPU



3.5.3. Work granuality change Since our baseline processor is a multithreaded processor,the memory latency can

be hidden by switching to a different available thread (or a group of threads in CUDA) after issuing memory requests

for one thread (or a group of threads). To overlap as many as memory requests, it is essential to generate as many

threads as possible[20], so that it is more probabilistic tohave available groups of threads waiting for an execution.

However, unlike typical data intensive applications that require many threads, the registration algorithm that we are

parallelizing only has 50 iterations for the outer loop (Theinner loops also have only 50 iterations). When each GPU

thread is assigned to each iteration of the outer loop, the maximum number of threads to be invoked on the GPU is

only 50. The consequence is that only one SM out of 16 SMs is utilized for the algorithm in 8800GTX GPU.

To overcome this under-utilization problem and to increasethe number of threads, the granuality of the work

per thread has to be changed. Rather than assigning each iteration of the outer loop to each thread, each CUDA

block takes each iteration of the outer loop, and each threadprocesses each iteration of the inner loop. After that a

synchronization instruction is issued between the two inner loops to run a reduction algorithm safely. For a faster

execution, the shared memory is used during the reduction. By taking this approach, the number of threads is dra-

matically increased from 50 threads to 2500 threads. This can reduce the memory latency penalty also. Furthermore,

it is more scalable. Because in the previous approach, only one block is used and the number of threads inside a

block can not go over 512 (512 is the limitation imposed by G80architecture/CUDA programming). The GPU

implementation which uses this new algorithm, the constantmemory, and combining the data transfers is indicated

by OuterLoopOpti in Table 2.

Naïve implementation: 

50 Th d 1 Bl k

Work granuality change

50 Th d 50 Bl k50 Threads, 1 Block 50 Threads, 50 Blocks

Figure 7. Work granuality change that generates more number of threads

4. Methodology

For the ITK Toolkit, version 3.10.1 released in 2008 is used for the experiment. Nvidia QuadroFX5600 [2] GPU

and NVCC version of 2.1 are used to produce the results. All the libraries and applications in the ITK Toolkit



Table 2. Inputs to MultiResMIRegistration
Input Name 3D Fixed Volume 3D Moving Volume No. Multi-Resolutions No. Iterations Source

BrainWeb10.0K T1 (6.78MB) [181x217x180] T2 (6.78MB) [181x217x180] 5 10000 ITK Toolkit
BrainWeb5.0K T1 (6.78MB) [181x217x180] T2 (6.78MB) [181x217x180] 5 5000
BrainWeb2.5K T1 (6.78MB) [181x217x180] T2 (6.78MB) [181x217x180] 5 2500

CTtoMP 102 10.0K CT (24.50MB) [512x512x49] MP (16.00MB) [256x256x128] 5 10000 Patient 102 [5]
CTtoMP 102 5K CT (24.50MB) [512x512x49] MP (16.00MB) [256x256x128] 5 5000

CTtoMP 102 2.5K CT (24.50MB) [512x512x49] MP (16.00MB) [256x256x128] 5 2500
CTtoMP 109 10.0K CT (20.50MB) [512x512x41] MP (16.00MB) [256x256x128] 5 10000 Patient 109

CTtoMP 109 5K CT (20.50MB) [512x512x41] MP (16.00MB) [256x256x128] 5 5000
CTtoMP 109 2.5K CT (20.50MB) [512x512x41] MP (16.00MB) [256x256x128] 5 2500
T1toPD009 10.0K T1 (3.00MB) [256x256x24] PD (3.00MB) [256x256x24] 5 10000 Patient 009
T1toPD 009 5.0K T1 (3.00MB) [256x256x24] PD (3.00MB) [256x256x24] 5 5000
T1toPD 009 2.5K T1 (3.00MB) [256x256x24] PD (3.00MB) [256x256x24] 5 2500

are compiled withReleaseversion (-O3), and GPU codes are also compiled with -O3. For comparison to GPU

performance, a CPU multithreaded version using Intel’s TBB[10] library (Version 2.1) is implemented and executed

on a 8-core machine. The machine setting is as follows, 2 socket 1.87 GHz Quad-core Intel Xeon (Total 8 Cores),

4MB L2-cache, 8GB RAM and QuadroFX5600 GPU. There are two input source files in each experiment shown

in Table 2. BrainWeb input is included in the ITK Toolkit. In order to obtain more data sets which vary in the

file sizes and in the types of images, data sets fromRetrospective Image Registration Evaluation Project[5] are

used in the experiment. Table 2 shows the actual data from thepatients indicated by the patient number. Types

of images are shown in the second and third columns indicatedby Fixed and Moving volume. Different types of

images indicated by T1, T2, PD, and MP are generated by setting different timing parameters of the MRI scanner.

For those configuration details on the images, these sourcescan be referenced [18, 12].

Table 3 shows the lists of the CPU and GPU implementations.Original implies the original ITK Toolkit code

without any modifications. This is not necessarily a serial execution since some portions of ITK code are already

parallelized [9]. InInnerLoopimplementation, each inner loop is separately parallelized by CUDA while the outer

loop code is running on the CPU. InOuterLoop, the outer loop is parallelized by CUDA after making algorithmic

changes to the code. This is a pure parallelization without using any optimizations. InOuterLoopConst, read-only

data such as derivative values are copied to the constant cache on the GPU. InOuterLoopOpti, there are three opti-

mizations: (1) The granuality of the thread is changed to generate more number of threads. (2) The number of DMA

transfers between CPU and GPU is reduced. (3) The constant memory is used. Thekernel lowerboundfunction is

inserted to measure the GPU kernel overhead. The detailed descriptions on these different GPU implementations

are discussed in Section 3.



Table 3. Experiment Configuration
Implementation Details

Original Original ITK execution on 8 Core machine
InnerLoop Parallelized two inner-loops in two separate GPU Kernels
OuterLoop Parallelized outer for-loop after making algorithmic change

OuterLoopConst Const memory is used for read-only values
OuterLoopOpti Work granuality change for GPU thread. Further optimized byreducing number of loads and reduction.

Kernel lowerbound GPU kernel implement ion commented out. Shows kernel overhead in other GPU implementations

5. Results

Figure 8 shows the average execution time of a single invocation of theGetValueAndDerivative() func-

tion. The value for the CPU and GPU is obtained by dividing thecumulated execution time of the function by the

total number of invocations. Note that the total number of invocations is obtained by multiplying the number of

Multi-Resolutions and the number of Iterations in Table 2. Figure 8 shows that the CPU execution time is 1527

microseconds, but it only takes about 104 microseconds on the GPU, resulting in 14.61x speedup.

Figure 8. The averaged outer-loop execution time per GetVal ueAndDerivative()

This result from Figure 8 implies that the benefit of running on the GPU increases as the number of GPU kernel

invocation increases. Figure 9 shows the application execution time on the various inputs specified in Table 2.

The first observation is that as the number of invocations increases for a given input (i.e., 2.5K, 5K, and 10K), the

execution time on both GPU and TBB implementations decreases.

For the GPU implementations, the execution time decreases further as more optimizations are applied.Outer Const

which uses the constant memory shows a negligible improvement compared to the naive GPU implementation. How-

ever,Outer Opti shows an average of 41.5% performance improvement over theOuter Constversion, approaching

within 7% of theKernel Lowerbound. The GPU implementation indicated byInnerLoopis not included in the result

figures due to the very severe performance degradation of more than 800%.
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Figure 9. Application Execution times. Note that Innerloop data is not shown due to severe slowdown

In comparison to 14.61x speedup on the nested loops parallelized by the GPU, the effect on the total applica-

tion speedup ranges from 3 to about 6 times as shown in Figure 10. The best speedup of 5.91x is obtained by

T1 PD 009 10K input7. The GPU speedup is 42% faster than the TBB implementation onthe 8-core machine on

average. Figure 11 shows the GPU speedup of the loops in theGetValueAndDerivative() function. The best

speedup of 14.749x on the loop is achieved by T1PD 009 10K input, where this input results in the best speedup

on the application as well. The TBB speedup across the inputsfor a kernel itself is 5.13X and for the application is

3.43X.

For an error analysis, each value of the transform matrix andthe offset matrix8 generated by the original CPU

version is compared with all the GPU implementations.GPU outputin Table 4 shows the output element which

produces the largest deviation from the correct output. Note that this value is selected after comparing across all

the GPU implementations (i.e., NoConst, Const, Opti).Correct CPU outputshows the corresponding correct output

value, andabsolute value errorshows the absolute difference between the correct value andthe GPU output. The

results show that all the errors are less than 0.05 across allthe input values.

7Note that the upperbound of 5.63X in Section 3.1 is obtained by using BrainWeb2.5K input
8Registration outputs: Transform matrix rotates a moving image. Offset matrix moves a moving image in xyz directions



Table 4. The largest selected GPU Errors for 5K (No.Iteratio ns) input
Input BrainWeb5.0K CTtoMP 102 5K CTtoMP 109 5K T1toPD009 5.0K

GPU output 0.14079 29.5355 52.9688 0.000111
Correct CPU output 0.14093 29.5393 52.9299 0.000112

Absolute value error 0.00014 0.0038 0.0389 0.000001
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Figure 10. Speedup over the Original implementation. Note t hat Innerloop data is not shown due to severe slowdown

6. Discussions

6.1. Object-oriented code

ITK source code is modularized in functionality whenever applicable. It is based on the template programming

to incorporate different kinds of image inputs. Any function within the ITK toolkit is likely to invoke other methods

which are defined in other classes. The difficult decision arises when porting the code into another platform such

as GPUs. Because the amount of work per function call is not large enough to gain an advantage since additional

overhead exists from DMA data transfers. This type of problem makes a parallelization implementation even more

challenging.

Another issue which prevents achieving a better performance is related to many invocations of a small function

body. When these functions are parallelized on the GPU, the performance improvement is not significant because the

driver overhead and extra time associated with DMA data transfers build up for each GPU invocation. In comparison,

these extra overhead does not exist if all the function call is combined and only one invocation exists. Unfortunately,

due to the highly-modularized implementation style in ITK,there are high number of invocations for each function.
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Figure 11. Outerloop Speedup over Original (Kernel)

To overcome this performance degradation factor, parallelization on the codes that are in the higher-level is necessary.

6.2. More optimizations

The speedup of the GPU can be further improved by skipping redundant allocation and deallocation between each

GPU kernel invocation. One way to implement this mechanism is to store the global pointer that points to the GPU

memory between invocations of the kernel. We plan to conductthis study in our future work.

7. Related Work

There have been several recent works which parallelized filters and applications in ITK. The work by Ohara and

Yeo [17] implemented a mutual-information based registration algorithm on the Cell Broadband Engine proces-

sor [19]. Parallelization with the Cell SIMD instructions produced the speedup of 4.5x. However, that speedup did

not include the file I/O time. On contrast, we developed the parallelization algorithm on the original, publically

available ITK source-code release [22] thereby our GPU implementation being directly applied to the ITK toolkit

used by the community users.

Muyan and Owens implemented a deformable registration algorithm on the GPU [14]. But the algorithm paral-

lelized in their work is in the other category of the registration (Not rigid registration), and the source code paral-

lelized is in C-code containing only the algorithm. In comparison, to the best of our knowledge, our work is the

first work which directly parallelizes the registration algorithm from the application suite in use, and optimized the

GPU implementation despite highly object-oriented C++ code environment, and small computation work per each

function call due to the highly-modularized style of implementation. Other related works include parallelization of

the filters by Jeong [24]. In his work, basic ITK image filters such as mean, gaussian, median, and anisotropic dif-

fusion filters are parallelized by CUDA, and the speedups reported range from 25x to 140x. These improved filters

can enhance the performance indirectly, especially the algorithms in the segmentation category.



8. Conclusions

This paper parallelized the mutual-information based registration application from a widely used medical imaging

toolkit called ITK (Insight Toolkit). This work is significant for two reasons. One is that this work parallelized the

registration algorithm from the complete software in use, not only the registration algorithm kernel itself. The

outcome of the work could be direct applicability and have anhigh impact to the community users worldwide.

Secondly, this work extracted out the performance on the GPUfrom such highly modularized, object-oriented,

and template-based source code. ITK source code is modularized so highly that any given work is divided into

many different function calls, and the style is very object-oriented that those function calls are often virtual function

calls and defined in different classes with different levelsof inheritances. Under these circumstances, this work

implemented a portion of a highly used Mutual-Information based registration application on the GPU using CUDA,

achieving 14.61x speedup on the kernel and 5.91x speedup on the application. We also show that using TBB the

speedup of the kernel itself is 5.28x and the speedup of the application is 3.43x. This work contributes to one of

the most time critical surgical operative environments as well as a faster 3D image processing and analysis by the

associated users.
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10. Appendix

This section provides information how to integrate CUDA to the ITK Toolkit. ITK is configured by CMake [4]

which is a cross-platform and open-source build system. Depending on the platform used, CMake generates make-

files for Linux, and workspaces for Visual Studio in Windows.The user can change the compilation settings only by

modifying theCMakeLists.txt file, not by directly changing the contents of the makefile or the workspace. For

integration of the CUDA code and the ITK Toolkit, one option is to modify theCMakeLists.txt file to include

the NVCC compiler and the associated CUDA wrapper function.But the easier method for integrating is to generate

a library of the GPU code, and simply link that library in the CMake compilation configuration.

A CUDA wrapper functiongpu loop.cu is created as a separate file, so that it can be compiled by using the

NVCC compiler. The wrapper function contains all the necessary GPU API calls such ascudaMemcpy as well as

the kernel source. To generate a static library of the GPU code, the following Linux commands are executed. Note

that the generated librarylibgpu.a and the corresponding header file containing the function declaration need to

be copied to the appropriate directory.

nvcc -c -O3 gpu_loop.cu -I/$INCLUDEPATH -L/$LIBPATH -l$LI B
ar rcs libgpu.a * .o
cp libgpu.a ˜/GPU_Codes/Library
cp gpu_function.h ˜/GPU_Codes/Include

Figure 12. Linux commands for generating static GPU library

The information of the GPU library and the corresponding header file needs to be updated inCMakeLists.txt

as shown in Figure 13. The interface inCMakelist.txt is straightforward. The directory which contains the

header file is added with theINCLUDE DIRECTORIEScommand. Similarly, the directory that contains the library

is added with theLINK DIRECTORIEScommand, and theLINK LIBRARIES command is used to specify the

names of the library used in the application. Figure 13 showsthe inclusion of the GPU library as well as the TBB

library.

After changes are made to theCMakelist.txt file, and the GPU library is generated in the appropriate direc-

tory, simply the left task is typing themake command in the MultiResMIRegistration application folderin the ITK

Toolkit. Similar approach can be used in the other applications that use the CMake build system.



1 PROJECT( MultiResMIRegistration )
2
3 INCLUDE_DIRECTORIES(˜/GPU_Codes/Include)
4 LINK_DIRECTORIES(˜/GPU_Codes/Library)
5 LINK_LIBRARIES(gpu)
6
7 INCLUDE_DIRECTORIES(/usr/local/cuda/include)
8 INCLUDE_DIRECTORIES(˜/NVIDIA_CUDA_SDK/common/inc)
9 LINK_DIRECTORIES(/usr/local/cuda/lib)
10 LINK_DIRECTORIES(˜/NVIDIA_CUDA_SDK/lib)
11 LINK_DIRECTORIES(˜/NVIDIA_CUDA_SDK/common/lib)
12 LINK_LIBRARIES(cuda)
13 LINK_LIBRARIES(cudart)
14 LINK_LIBRARIES(GL)
15 LINK_LIBRARIES(GLU)
16
17 INCLUDE_DIRECTORIES(˜/Library/tbb21_20080605oss/i nclude)
18 LINK_DIRECTORIES(˜/Library/tbb21_20080605oss/buil d/

linux_em64t_gcc_cc3.4.6_libc2.3.4_kernel2.6.9_relea se)
19 LINK_LIBRARIES(tbb tbbmalloc)

Figure 13. Inserted configurations in CMakelist.txt for CUD A and TBB integration


