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ABSTRACT
GPU architectures are increasingly important in the multi-core era
due to their high number of parallel processors. Performance op-
timization for multi-core processors has been a challenge for pro-
grammers. Furthermore, optimizing for power consumption is even
more difficult. Unfortunately, as a result of the high numberof pro-
cessors, the power consumption of many-core processors such as
GPUs has increased significantly.

Hence, in this paper, we propose an integrated power and perfor-
mance (IPP) prediction model for a GPU architecture to predict the
optimal number of active processors for a given application. The
basic intuition is that when an application reaches the peakmem-
ory bandwidth, using more cores does not result in performance
improvement.

We develop an empirical power model for the GPU. Unlike most
previous models, which require measured execution times, hard-
ware performance counters, or architectural simulations,IPP pre-
dicts execution times to calculate dynamic power events. Wethen
use the outcome of IPP to control the number of running cores.We
also model the increases in power consumption that resultedfrom
the increases in temperature.

With the predicted optimal number of active cores, we show that
we can save up to 22.09% of runtime GPU energy consumption and
on average 10.99% of that for the five memory bandwidth-limited
benchmarks.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures

; C.4 [Performance of Systems]: Modeling techniques
; C.5.3 [Computer System Implementation]: Microcomputers

General Terms
Measurement, Performance

Keywords
Analytical model, CUDA, GPU architecture, Performance, Power
estimation, Energy
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1. INTRODUCTION
The increasing computing power of GPUs gives them a consid-

erably higher throughput than that of CPUs. As a result, manypro-
grammers try to use GPUs for more than just graphics applications.
However, optimizing GPU kernels to achieve high performance is
still a challenge. Furthermore, optimizing an applicationto achieve
a better power efficiency is even more difficult.

The number of cores inside a chip, especially in GPUs, is in-
creasing dramatically. For example, NVIDIA’s GTX280 [2] has 30
streaming multiprocessors (SMs) with 240 CUDA cores, and the
next generation GPU will have 512 CUDA cores [3]. Even though
GPU applications are highly throughput-oriented, not all applica-
tions require all available cores to achieve the best performance.

In this study, we aim to answer the following important ques-
tions: Do we needall cores to achieve the highest performance?
Can we save power and energy by usingfewer cores?

Figure 1 shows performance, power consumption, and efficiency
(performance per watt) as we vary the number of active cores.1 The
power consumption increases as we increase the number of cores.
Depending on the circuit design (power gating, clock gating, etc.),
the gradient of an increase in power consumption also varies. Fig-
ure 1(left) shows the performances of two different types ofappli-
cations. In Type 1, the performance increases linearly, because ap-
plications can utilize the computing powers in all the cores. How-
ever, in Type 2, the performance is saturated after a certainnumber
of cores due to bandwidth limitations [22, 23]. Once the number of
memory requests from cores exceeds the peak memory bandwidth,
increasing the number of active cores does not lead to a better per-
formance. Figure 1(right) shows performance per watt. In this pa-
per, the number of cores that shows the highest performance per
watt is called the optimal number of cores.

In Type 2, since the performance does not increase linearly,using
all the cores consumes more energy than using the optimal number
of cores. However, for application Type 1, utilizing all thecores
would consume the least amount of energy because of a reduction
in execution time. The optimal number of cores for Type 1 is the
maximum number of available cores but that of Type 2 is less than
the maximum value. Hence, if we can predict the optimal number
of cores at static time, either the compiler (or the programmer) can
configure the number of threads/blocks2 to utilize fewer cores, or
hardware or a dynamic thread manager can use fewer cores.

To achieve this goal, we propose an integrated power and per-
formance prediction system, which we callIPP. Figure 2 shows
an overview of IPP. It takes a GPU kernel as an input and predicts
both power consumption and performance together, whereas previ-

1Active cores mean the cores that are executing a program.
2The term,block, is defined in the CUDA programming model.
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Figure 1: Performance, power, and efficiency vs. # of active
cores (left: performance, middle: power, right: performance
per watt)

ous analytical models predict only execution time or power.More
importantly, unlike previous power models, IPP does not require ar-
chitectural timing simulations or hardware performance counters;
instead it uses outcomes of a timing model.

Performance/watt predictionGPU Kernel Performance Prediction

Power/Temperature Pred.
Optimal thread/block configuration

H/W Dynamic Power
Manager

Programmer

Compiler

Figure 2: Overview of the IPP System

Using the power and performance outcomes, IPP predicts the
optimal number of cores that results in the highest performance per
watt. We evaluate the IPP system and demonstrate energy savings
in a real GPU system. The results show that by using fewer cores
based on the IPP prediction, we can save up to 22.09% and on av-
erage 10.99% of runtime energy consumption for the five memory
bandwidth-limited benchmarks. We also estimate the amountof
energy savings for GPUs that employ a power gating mechanism.
Our evaluation shows that with power gating, the IPP can saveon
average 25.85% of the total GPU power for the five bandwidth-
limited benchmarks.

In summary, our work makes the following contributions:

1. We propose what, to the best of our knowledge, is the first an-
alytical model to predict performance, power and efficiency
(performance/watt) of GPGPU applications on a GPU archi-
tecture.

2. We develop an empirical runtime power prediction model for
a GPU. In addition, we also model the increases in runtime
power consumption that resulted from the increases in tem-
perature.

3. We propose the IPP system that predicts the optimal number
of active cores to save energy.

4. We successfully demonstrate energy savings in a real system
by activating fewer cores based on the outcome of IPP.

2. BACKGROUND ON POWER
Power consumption can be divided into two parts: dynamic power

and static power, as shown in Equation (1).

Power = Dynamic_power + Static_power (1)

Dynamic power is the switching overhead in transistors, so it is
determined by runtime events. Static power is mainly determined
by circuit technology, chip layout and operating temperature.

2.1 Building a Power Model Using an
Empirical Method

Isci and Martonosi [12] proposed an empirical method to build-
ing a power model. They measured and modeled the Intel Pentium
4 processor.

Power =
n

X

i=0

(AccessRate(Ci) × ArchitecturalScaling(Ci) (2)

× MaxPower(Ci) + NonGatedClockP ower(Ci)) + IdleP ower

Equation (2) shows the basic power model discussed in [12]. It
consists of the idle power plus the dynamic power for each hard-
ware component, where theMaxPower andArchitecturalScaling

terms are heuristically determined. For example,MaxPower is em-
pirically determined by running several training benchmarks that
stress fewer architectural components. Access rates are obtained
from performance counters. They indicate how often an architec-
tural unit is accessed per unit of time, where one is the maximum
value.

2.2 Static Power
As the technology is scaled, static power consumption is in-

creased [4]. To understand static power consumption and tempera-
ture effects, we briefly describe static power models.

Butts and Sohi [6] presented the following simplified leakage
power model for an architecture-level study.

Pstatic = Vcc · N · Kdesign · Îleak (3)

Vcc is the supply voltage,N is the number of transistors in the
design, andKdesign is a constant factor that represents the tech-
nology characteristics.̂Ileak is a normalized leakage current for a
single transistor that depends onVth, which is the threshold volt-
age. Later, Zhang et al. [24] improved this static power model to
consider temperature effects and operating voltages inHotLeakage,
a software tool. In their model,Kdesign is no longer constant and
depends on temperature, whereÎleak is a function of temperature
and supply voltage. The leakage current can be expressed as shown
in Equation (4).

Îleak = µ0 · COX ·

W

L
· eb(Vdd−Vdd0)

· v2
t · (1 − e

−Vdd
vt ) · e

−|Vth|−Voff
n·vt

(4)

vt is the thermal voltage that is represented bykT/q, and it depends
on temperature. The threshold voltage,Vth, is also a function of
temperature. Sincev2

t is the dominant temperature-dependent fac-
tor in Equation (4), the leakage power quadratically increases with
temperature. However, in a normal operating temperature range,
the leakage power can be simplified as a linear model [21].

3. POWER AND TEMPERATURE MODELS

3.1 Overall Model
GPU power consumption (GP U_power) is modeled similar to

Equation (2) [12] in Section 2. TheGPU_power term consists of
Runtime_power andIdlePower terms, as shown in Equation (5).
TheNonGatedClockPower term is not used in this model, because
the evaluated GPUs do not employ clock gating.IdlePower is
the power consumption when a GPU is on but no application is
running. Runtime_power is the additional power consumption re-
quired to execute programs on a GPU. It is the sum of runtime-
powers from all SMs(RP_SMs) and GDDR memory (RP_Memory).



Table 1: List of instructions that access each architectural unit

PTX Instruction Architectural Unit Variable Name
add_int sub_int addc_int subc_int Int. arithmetic unit RP_Int
sad_int div_int rem_int abs_int
mul_int mad_int mul24_int
mad24_int min_int neg_int
add_fp sub_fp mul_fp fma_fp Floating point unit RP_Fp
neg_fp min_fp lg2_fp ex2_fp
mad_fp div_fp abs_fp
sin_fp cos_fp rcp_fp sqrt_fp SFU RP_Sfu
rsqrt_fp
xor cnot shl shr mov cvt ALU RP_Alu
set setp selp slct and or
st_global ld.global Global memory RP_GlobalMem
st_local ld.local Local memory RP_LocalMem
tex Texture cache RP_Texture_Cache
ld_const Constant cache RP_Const_Cache
ld_shared st_shared Shared memory RP_Shared
setp selp slct and or xor shr mov Register file RP_Reg
cvt st_global ld_global ld_const
add mad24 sad div rem abs neg
shl min sin cos rcp sqrt rsqrt set
mul24 sub addc subc mul mad cnot
ld_shared st_local ld_local tex
All instructions FDS (Fetch/Dec/Sch) RP_FDS

GPU_power = Runtime_power + IdlePower (5)

Runtime_power =

n
X

i=0

RP_Componenti (6)

= RP_SMs + RP_Memory

3.2 Modeling Power Consumption from
Streaming Multiprocessors

In order to model the runtime power of SMs, we decompose the
SM into several physical components, as shown in Equation (7)
and Table 1. The texture and constant caches are included in the
SM_Component term, because they are shared between multiple
SMs in the evaluated GPU system. One texture cache is shared by
three SMs, and each SM has its own constant cache.RP_Const_SM

is a constant runtime power component for each active SM. It mod-
els power consumption from several units, including I-cache, and
the frame buffer, which always consume relatively constantamount
of power when a core is active.

n
X

i=0

SM_Componenti = RP_Int + RP_Fp + RP_Sfu (7)

+ RP_Alu + RP_Texture_Cache + RP_Const_Cache

+ RP_Shared + RP_Reg + RP_FDS + RP _Const_SM

RP _SMs = Num_SMs ×

n
X

i=0

SM_Componenti (8)

Num_SMs: Total number of SMs in a GPU

Table 1 summarizes the modeled architectural components used
by each instruction type and the corresponding variable names in
Equation (7). All instructions access the FDS unit (Fetch/Dec/Sch).
For the register unit, we assume that all instructions accessing the
register file have the same number of register operands per instruc-
tion to simplify the model. The exact number of register accesses

per instruction depends on the instruction type and the number of
operands, but we found that the power consumption difference due
to the number of register operands is negligible.

Access Rate:As Equation 2 shows, dynamic power consump-
tion is dependent on access rate of each hardware component.Isci
and Martonosi used a combination of hardware performance coun-
ters to measure access rates [12]. Since GPUs do not have any
speculative execution, we can estimate hardware access rates based
on the dynamic number of instructions and execution times without
hardware performance counters.

Equation (9) shows how to calculate the runtime power for each
component (RPcomp) such asRP_Reg. RPcomp is the multiplica-
tion of AccessRatecomp andMaxPowercomp. MaxPowercomp is
described in Table 2 and will be discussed in Section 3.4. Note that
RP_Const_SM is not dependent onAccessRatecomp.

Equation (10) shows how to calculate the access rate for each
component,AccessRatecomp. The dynamic number of instructions
per component (DAC_per_thcomp) is the sum of instructions that
access an architectural component.Warps_per_SM indicates how
many warps3 are executed in one SM. We divide execution cycles
by four because one instruction is fetched, scheduled, and executed
every four cycles. This normalization also makes the maximum
value of theAccessRatecomp term be one.

RPcomp = MaxPowercomp × AccessRatecomp (9)

AccessRatecomp =
DAC_per_thcomp × Warps_per_SM

Exec_cycles/4
(10)

DAC_per_thcomp =

n
X

i=0

Number_Inst_per_warpsi(comp) (11)

Warps_per_SM =

„

#Threads_per_block

#Threads_per_warp
×

#Blocks

#Active_SMs

«

(12)

3.3 Modeling Memory Power
The evaluated GPU system has five different memory spaces:

global, shared, local, texture, and constant. The shared memory
space uses a software managed cache that is inside an SM. The
texture and constant memories are located in the GDDR memory,
but they mainly use caches inside an SM. The global memory and
the local memory are sharing the same physical GDDR memory,
henceRP_Memory considers both. Shared, constant, and texture
memory spaces are modeled separately as SM components.

RP _Memory =

n
X

i=0

Memory_componenti (13)

= RP_GlobalMem + RP_LocalMem

3.4 Power Model Parameters
To obtain the power model parameters, we design a set of syn-

thetic microbenchmarks that stress different architectural compo-
nents in the GPU. Each microbenchmark has a loop that repeatsa
certain set of instructions. For example, the microbenchmark that
stresses FP units contains a high ratio of FP instructions.

The optimum set ofMaxP owercomp values in Equation (9) that
minimize the error between the measured power and the outcome
of the equation is searched. However, to avoid searching through a
large space of values, the initial seed value for each architecture unit
is estimated based on the relative physical die sizes of the unit [12].
Table 2 shows the parameters used forMaxP owercomp. Eight

3Warp is a group of threads that are fetched/executed together in-
side the GPU architecture.



power components require a special piecewise linear approach [12]:
an initial increase from idle to relatively low access rate causes a
large granularity of increase in power consumption while a fur-
ther increase causes a smaller increase. Spec.Linear column in-
dicates whether theAccessRatecomp term in Equation (9) needs to
be replaced with the special piecewise linear access rate based on
the following simple conversion;0.1365 ∗ ln(AccessRatecomp) +

1.001375. The parameters in this conversion are empirically deter-
mined to have a piecewise linear function.

Table 2: Empirical power parameters
Units MaxPower OnChip Spec.Linear
FP 0.2 Yes Yes
REG 0.3 Yes Yes
ALU 0.2 Yes No
SFU 0.5 Yes No
INT 0.25 Yes Yes
FDS (Fetch/Dec/Sch) 0.5 Yes Yes
Shared memory 1 Yes No
Texture cache 0.9 Yes Yes
Constant cache 0.4 Yes Yes
Const_SM 0.813 Yes No

Global memory 52 No Yes
Local memory 52 No Yes

Figure 3 shows how the overall power is distributed among the
individual architectural components for all the evaluatedbench-
marks (Section 5 presents the detailed benchmark descriptions and
the evaluation methodology). On average, the memory, idle power,
and RP_Const_SM consume more than 60% of the total GPU power.
REG and FDS also consume relatively higher power than other
components because almost all instructions access these units.

3.5 Active SMs vs. Power Consumption
To measure the power consumption of each SM, we design an-

other set of microbenchmarks to control the number of activeSMs.
These microbenchmarks are designed such that only one blockcan
be executed in each SM, thus as we vary the number of blocks,
the number of active SMs varies as well. Even though the eval-
uated GPU does not employ power gating, idle SMs do not con-
sume as much power as active SMs do because of low-activity fac-
tors [18] (i.e., idle SMs do not change values in circuits as often
as active SMs). Hence, there are still significant differences in the
total power consumption depending on the number of active SMs
in a GPU.
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Figure 4: Power consumption vs. active SMs

Figure 4 shows an increase in power consumption as we increase
the number of active SMs. The maximum power delta between
using only one SM versus all SMs is 37W. Since there is no power
gating, the power consumption does not increase linearly aswe
increase the number of SMs. We use a log-based model instead
of a linear curve, as shown in Equation (14). We also model the
memory power consumption following the exact same log-based

trend although it is not directly dependent on the number of active
SMs. Finally, runtime power can be modeled by taking the number
of active SMs as shown in Equation (16)

RP_SMs = Max_SM × log10(α × Active_SMs + β) (14)

Max_SM = (Num_SMs ×

n
X

i=0

SM_Componenti) (15)

α = (10 − β)/Num_SMs, β = 1.1

Runtime_power = (Max_SM + RP_Memory) (16)

× log10(α × Active_SMs + β)

Active_SMs: Number of active SMs in the GPU

3.6 Temperature Model
CPU Temperature models are typically represented by an RC

model [20]. We determine the model parameters empirically by
using a step function experiment. Equation (17) models the rising
temperature, and Equation (18) models the decaying temperature.

Temperaturerise(t) = Idle_temp + δ
“

1 − e
−t/RC_Rise

”

(17)

Temperaturedecay(t) = Idle_temp + γ
“

e−t/RC_Decay
”

(18)

δ = Max_temp − Idle_temp, γ = Decay_temp − Idle_temp

Idle_temp: Idle operating chip temperature

Max_temp: Maximum temperature, which depends on runtime power

Decay_temp: Chip temperature right before decay
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Figure 5: Temperature effects from power, (top): Measured
and estimated temperature, (bottom): Measured power

Figure 5 shows estimated and measured temperature variations.
Both the chip temperature and the board temperature are measured
with the built-in sensors in the GPU.Max_temp is a function of
runtime power, which depends on application characteristics. We
discovered that the chip temperature is strongly affected by the rate
of GDDR memory accesses, not only runtime power consumption.
Hence, the maximum temperature is modeled with a combination
of them as shown in Equation (19). The model parameters are de-
scribed in Table 3. Note thatMemory_Insts includes global and
local memory instructions.

Max_temp(Runtime_P ower) = (µ × Runtime_Power) + λ (19)

+ ρ × MemAccess_intensity

MemAccess_intensity =
Memory_Insts

NonMemory_Insts
(20)
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Figure 3: Power breakdown graph for all the evaluated benchmarks

Table 3: Parameters for GTX280
Parameter Value
µ 0.120
λ 5.5
ρ 21.505
RC_Rise 35
RC_Decay 60

3.7 Modeling Increases in Static Power
Consumption

Section 2.2 discussed the impact of temperature on static power
consumption. Because of the high number of processors in the
GPU chip, we observe an increase in runtime power consumption
as the chip temperature increases, as shown in Figure 6. To consider
increases in static power consumption, we include the temperature
model (Equations (17) and (18)) into the runtime power consump-
tion model. We use a linear model to represent increases in static
power as discussed in Section 2.2. Since we cannot control the op-
erating voltage of the evaluated GPUs at runtime, we only consider
operating temperature effects.
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Figure 6: Static power effects

Figure 6 shows that power consumption increases gradually over
time after an application starts,4 and the delta is 14 watts. This
delta could be caused by increases in static power consumption or
additional fan power. By manually controlling the fan speedfrom
lowest to highest, we measure that the additional fan power con-
sumption is only 4W. Hence, the remaining 10 watts of the power
consumption increase is modeled as the additional static power

4The initial jump of power consumption exists when an application
starts.

increase that resulted from the increases in temperature. Equa-
tion (21) shows the comprehensive power equation over time that
includes the increased static power consumption, which depends
on σ (the ratio of power delta over temperature delta (σ = 10 /
22)). Note thatRuntime_power0 is an initial power consumption
obtained from (16), and the model assumes a cold start (i.e.,the sys-
tem is in the idle state).Temperature(t) in (23) is obtained from
(17) or (18).

GPU_power(t) = Runtime_power(t) + IdlePower (21)

Runtime_power(t) = Runtime_power0 + σ × Delta_temp(t) (22)

Delta_temp(t) = Temperature(t) − Idle_temp (23)

4. IPP: INTEGRATED POWER AND
PERFORMANCE MODEL

In this section, we describe the integrated power and perfor-
mance model to predict performance per watt and the optimal num-
ber of active cores. The integrated power and performance model
(IPP) uses predicted execution times to predict power consumption
instead of measured execution times.

4.1 Execution Time and Access Rate
Prediction

In Section 3, we developed the power model that computes ac-
cess rates by using measured execution time information. Predict-
ing power at static time requires access rates in advance. Inother
words, we also need to predict the execution time of an application
to predict power. We used a recently developed GPU analytical tim-
ing model [9] to predict the execution time. The model is briefly
explained in this section. Please refer to the analytical timing model
paper [9] for the detailed descriptions.

In the timing model, the total execution time of a GPGPU ap-
plication is calculated with one of Equations (24), (25), and (26)
based on the number of running threads, MWP, and CWP in the
application. MWP represents the number of memory requests that
can be serviced concurrently and CWP represents the number of
warps that can finish one computational period during one memory
access period. N is the number of running warps.Mem_L is the
average memory latency (430 cycles for the evaluated GPU archi-
tecture).Mem_cycles is the processor waiting cycles for memory
operations.Comp_cycles is the execution time of all instructions.
Repw is the number of times that each SM needs to repeat the same
set of computation.



Case1: If (MWP is N warps per SM) and (CWP is N warps per SM)

(Mem_cycles + Comp_cycles +
Comp_cycles

#Mem_insts
× (MWP − 1))(#Repw)

(24)

Case2: If (CWP>= MWP) or (Comp_cycles> Mem_cycles)

(Mem_cycles ×

N

MWP
+

Comp_cycles

#Mem_insts
× (MWP − 1))(#Repw)

(25)

Case3: If (MWP> CWP)

(Mem_L + Comp_cycles × N)(#Repw) (26)

IPP calculates the AccessRate using Equation (27), where the
predicted execution cycles (Predicted_Exec_Cycles) are calculated
with one of the Equations (24),(25), and (26).

AccessRatecomp =
DAC_per_thcomp × Warps_per_SM

Predicted_Exec_Cycles/4
(27)

4.2 Optimal Number of Cores for Highest
Performance/Watt

IPP predicts the optimal number of SMs that would achieve the
highest performance/watt. As we showed in Figure 1, the perfor-
mance of an application either increases linearly (in this case, the
optimal number of SMs is always the maximum number of cores)
or non-linearly (the optimal number of SMs is less than the maxi-
mum number of cores). Performance per watt can be calculatedby
using Equation (28).

perf. per watt(cores) =
(work/execution time(# of cores)

(power(# of cores))
(28)

Equations (24),(25), and (26) calculate execution times. Among
the three cases, only Case 2 has a memory bandwidth limited case.
Case 1 is used when there are not enough number of running threads
in the system, and Case 3 models when an application is compu-
tationally intensive. So both Cases 1 and 3 would never reachthe
peak memory bandwidth. To understand the memory bandwidth
limited case, let’s look at MWP more carefully. The following
equations show the steps in calculating MWP.MWP is the number
of memory requests that can be serviced concurrently. As shown
in Equation(29), MWP is the minimum ofMWP_Without_BW ,
MWP_peak_BW , andN . N is the number of running warps. If
there are not enough warps, MWP is limited by the number of run-
ning warps. If an application is limited by memory bandwidth,
MWP is determined byMWP_peak_BW , which is a function of
a memory bandwidth and the number of active SMs. Note that
Departure_delay represents the pipeline delay between two con-
secutive memory accesses, and it is dependent on both the memory
system and the memory access types (coalesced or uncoalesced) in
applications.

MWP = MIN(MWP _Without_BW, MWP_peak_BW, N) (29)

MWP_peak_BW =
Mem_Bandwidth

BW_per_warp × #ActiveSM
(30)

BW _per_warp =
Freq × Load_bytes_per_warp

Mem_L
(31)

MWP_Without_BW _full = Mem_L/Departure_delay (32)

MWP_Without_BW = MIN(MWP_Without_BW_full, N) (33)

We could calculated(perf. per watt(# of active cores)
d(# of active cores)

= 0 to

find the optimal number of cores. However, we observed that once
MWP_peak_BW reachesN , the application usually reaches the
peak bandwidth. Hence, based on Equation (30), we conclude that
the optimal number of cores can be calculated using the following
equations to simplify the calculation.

if (1) (MWP == N) or (CWP== N) or (34)

(2) MWP> CWP or

(3) MWP < MWP_peak_BW

Optimal # of cores = Maximum available # of cores

else

Optimal # of cores =
Mem_Bandwidth

(BW _per_warp) × N

4.3 Limitations of IPP
IPP requires both power and timing models thereby inheriting

the limitations from them. Some examples of limitations include
the following: control flow intensive applications, asymmetric ap-
plications, and texture cache intensive applications.

IPP also requires an instruction information. However, IPPdoes
not require an actual number of total instructions. It calculates only
access rates that can be easily normalized with an input datasize.
Nonetheless, if an application shows a significantly different be-
havior depending on input sizes, IPP needs to consider the input
size effects, which will be addressed in our future work.

4.4 Using Results of IPP
In this paper, we constrain the number of active cores based on an

output of IPP by only limiting the number of blocks inside an appli-
cation, since we cannot change the hardware or the thread sched-
uler. If the number of active cores can be directly controlled by
hardware or by a runtime thread scheduler, compilers or program-
mers do not have to change their applications to utilize fewer cores.
Instead, IPP only passes the information of the number of optimal
cores to the runtime system, and either the hardware or runtime
thread scheduler enables only the required number of cores to save
energy.

5. METHODOLOGY

5.1 Power and Temperature Measurement
The NVIDIA GTX280 GPU, which has 30 SMs and uses a 65nm

technology, is used in this work. We use the Extech 380801 AC/DC
Power Analyzer [1] to measure the overall system power consump-
tion. The raw power data is sent to a data-log machine every 0.5
second. Each microbenchmark executes for an average of 10 sec-
onds.

Since we measure the input power to the entire system, we have
to subtractIdlepower_System (159W) from the total system input
power to obtainGP U_P ower.5 TheIdle_Power value for the eval-
uated GPU is 83W. The GPU temperature is measured with the
nvclock utility [16]. The command "nvclock -i" outputs board and
chip temperatures. Temperature is measured every second.

5IdlePower_System is obtained by measuring system power with
another GPU card whose idle power is known



5.2 Benchmarks
To test the accuracy of our IPP system, we use the Merge bench-

marks [15, 9], five additional memory bandwidth-limited bench-
marks (Nmat, Dotp, Madd, Dmadd, and Mmul), and one computa-
tional intensive (i.e., non-memory bandwidth limited) benchmark
(Cmem). Table 4 describes each benchmark and summarizes the
characteristics of them.

To calculate the number of dynamic instructions, we use a GPU
PTX emulator, Ocelot [13]. It also classifies instruction types.

6. RESULTS

6.1 Evaluation of Runtime Power Model
Figure 7 compares the predicted power consumption with the

measured power value for the microbenchmarks. According toFig-
ure 3, the global memory consumes the most amount of power.
MB4, MB8, and MEM benchmarks consume much greater power
than the FP benchmark, which consists of mainly floating point in-
structions. Surprisingly, the benchmarks that use texturecache or
constant cache also consume high power. This is because boththe
texture cache and the constant cache have higherMaxP ower than
that of the FP unit. The geometric mean of the error in the power
prediction for microbenchmark is 2.5%. Figure 8 shows the access
rates for each microbenchmark. When an application does nothave
many memory operations such as the FP benchmark, dynamic ac-
cess rates for FP or REG can be very close to one. FDS is one when
an application reaches the peak performance of the machine.
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Figure 7: Comparison of measured and predicted GPU power
consumption for the microbenchmarks
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Figure 8: Dynamic access rate of the microbenchmarks

Figure 9 compares the predicted power and the measured power
consumptions for the evaluated GPGPU kernels. The geometric
mean of the power prediction error is 9.18% for the GPGPU ker-
nels. Figure 10 shows the dynamic access rates. The complete
breakdown of the GPU power consumption is shown in Figure 3.
Bino and Conv have lower global memory access rates than others,
which results in less power consumption than others. Sepia and Bs
are high performance applications. This explains why they have
high REG and FDS values. All the memory bandwidth-limited
benchmarks have higher power consumption even though they have
relatively lower FP/REG/FDS access rates.
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Figure 9: Comparison of measured and predicted GPU power
consumption for the GPGPU kernels
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Figure 10: Dynamic access rate of the GPGPU kernels

6.2 Temperature Model
Figure 11 displays the predicted chip temperature over timefor

all the evaluated benchmarks. The initial temperature is 57◦C, the
typical GPU cold state temperature in our evaluated system.The
temperature is saturated after around 600 secs. The peak tempera-
ture depends on the peak run-time power consumption, and it varies
from 68◦C (the INT benchmark) to 78◦C (SVM). Based on Equa-
tion (22), we can predict that the runtime power of SVM would
increase by 10W after 600 seconds. However, for the INT bench-
mark, it would increase by only 5W after 600 seconds.

4 55 05 56 06 57 07 58 08 5
P redi ct edChi pT emperat ure(C) 1 0 S e c s6 0 S e c s6 0 0 S e c s6 0 0 0 S e c s4 0
Figure 11: Peak temperature prediction for the benchmarks.
Initial temperature: 57 ◦C

6.3 Power Prediction Using IPP
Figure 12 shows the power prediction of IPP for both the mi-

crobenchmarks and the GPGPU kernels. These are equivalent to
the experiments in Section 6.1. The main difference is that Sec-
tion 6.1 requires measured execution times while IPP uses pre-
dicted times using the equations in Section 4. Using predicted times
could have increased the error in prediction of power values, but
since the error of timing model is not high, the overall errorof the
IPP system is not significantly increased. The geometric mean of
the power prediction of IPP is 8.94% for the GPGPU kernels and
2.7% for the microbenchmarks, which are similar to using real ex-
ecution time measurements.



Table 4: Characteristics of the Evaluated Benchmarks (AI means arithmetic intensity.)
Benchmark Description Peak Bandwidth (GB/s) MWP CWP AI

SVM [15] Kernel from a SVM-based algorithm 54.679 (non-bandwidth limited) 5.875 11.226 11.489
Binomial(Bino) [15] American option pricing 3.689 (non-bandwidth limited) 14.737 1.345 314.306
Sepia [15] Filter for artificially aging images 12.012 (non-bandwidth limited) 12 12 8.334
Convolve(Conv) [15] 2D Separable image convolution 16.208 (non-bandwidth limited) 10.982 3.511 43.923
Blackscholes(Bs) [17] European option pricing 51.033 (non-bandwidth limited) 3 5.472 24.258
Matrixmul(Nmat) Naive version of matrix multiplication 123.33 (bandwidth limited) 10.764 32 3.011
Dotp Matrix dotproduct 111.313 (bandwidth limited) 10.802 16 0.574
Madd Matrix multiply-add 115.058 (bandwidth limited) 10.802 16 1.049
Dmadd Matrix double memory multiply add 109.996 (bandwidth limited) 10.802 16 1.0718
Mmul Matrix single multiply 114.997 (bandwidth limited) 10.802 16 1.060
Cmem Matrix add FP operations 64.617 (non-bandwidth limited) 10.802 9.356 12.983
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Figure 12: Comparison of measured and IPP predicted GPU power comparison (Left:Microbenchmarks, Right:GPGPU kernels)

6.4 Performance and Power Efficiency
Prediction Using IPP

Based on the conditions in Equation (34), we identify the bench-
marks that reach the peak memory bandwidth. The five merge
benchmarks do not reach the peak memory bandwidth as shown in
Table 4. CWP values in Bino, Sepia and Conv are equal to or less
than the MWP values of them, so these benchmarks cannot reach
the peak memory bandwidth. Both SVM’s MWP (5.878) and Bs’s
MWP (3) are less than MWP_peak_BW (10.8). Thus they cannot
reach the peak memory bandwidth also.

To further evaluate our IPP system, we use the benchmarks that
reach the peak memory bandwidth (the 3rd column in Table 4 shows
the average memory bandwidth of each application). We also in-
clude one non-bandwidth limited benchmark (Cmem) for a com-
parison. In this experiment, we vary the number of active cores
by varying the number of blocks in the CUDA applications. We
design the applications such that one SM executes only one block.
Note that, all different configurations (in this section) ofone appli-
cation have the exact same amount work. So, as we use fewer cores
(i.e., fewer blocks), each core (or block) executes more number of
instructions. We use Giga Instructions Per Sec (GIPS)6 instead of
Gflops/s for a metric.

Figure 13 shows how GIPS varies with the number of active
cores for both the actual measured data and the predictions of IPP.
Only Cmem has a linear performance improvement in both the
measured data and the predicted values. The rest of the benchmarks
show a nearly saturated performance as we increase the number of
active cores. IPP still predicts GIPS values accurately except for
Cmem. Although the predicted performance of Cmem does not
exactly match the actual performance, IPP still correctly predicts
the trend. Nmat shows higher performance than other bandwidth
limited benchmarks, because it has a higher arithmetic intensity.

Figure 14 shows the actual bandwidth consumption of the ex-
periment in Figure 13. Cmem shows a linear correlation between

6We decide to use GIPS instead of Gflop/s because the performance
efficiency should include non-floating point instructions.
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Figure 13: GIPS vs. Active Cores
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Figure 14: Average measured bandwidth consumption vs. # of
active cores

its bandwidth consumption and the number of active cores, but it
still cannot reach the peak memory bandwidth. The memory band-
widths of the remaining benchmarks are saturated when the number
of active cores is around 19. This explains why the performance of
these benchmarks is not improved significantly after approximately
19 active cores.

Figure 15 shows GIPS/W for the same experiment. The results
show both the actual GIPS/W and the predicted GIPS/W using IPP.
Nmat shows a salient peak point, but for the rest of benchmarks,
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Figure 15: Performance per watt variation vs. # of active cores
for measured and the predicted values

the efficiency (GIPS/W) has a very smooth curve. As we have ex-
pected, only GIPS/W of Cmem increases linearly in both the mea-
sured data and the predicted data.
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Figure 16: GIPS/W for the GPGPU kernels

Figure 16 shows GIPS/W for all the GPGPU kernels running on
30 active cores. The GIPS/W values of the non-bandwidth limited
benchmarks are much higher than those of the bandwidth limited
benchmarks. GIPS/W values can vary significantly from applica-
tion to application depending on their performance. The results
also include the predicted GIPS/W using IPP. Except for Binoand
Bs, IPP predicts GIPS/W values fairly accurately. The errors in the
predicted GIPS/W values of Bino and Bs are attributed to the differ-
ences between their predicted and measured runtime performance.

6.4.1 Energy Savings by Using the Optimal Number
of Cores Based on IPP

Based on Equation (34), IPP calculates the optimal number of
cores for a given application. This is a simple way of choosing
the highest GIPS/W point among different number of cores. IPP
returns 20 for all the evaluated memory bandwidth limited bench-
marks and 30 for Cmem.

Figure 17 shows the difference in energy savings between theuse
of the optimal number of cores and the maximum number (30) of
cores.Runtime+Idle shows the energy savings when the total GPU
power is used in the calculation.Runtime shows the energy savings
when only the runtime power from the equation (5) is used.Pow-

ergating is the predicted energy savings if power gating is applied.
The average energy savings forRuntime cases is 10.99%.
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Figure 17: Energy savings using the optimal number of cores
based on the IPP system (NVIDIA GTX 280 and power gating
GPUs)

6.4.2 Energy Savings in Power Gating GPUs
The current NVIDIA GPUs do not employ any per-core power

gating mechanism. However, future GPU architectures couldem-
ploy power gating mechanisms as a result of the growth in the num-
ber of cores. As a concrete example, CPUs have already made use
of per-core power gating [11].

To evaluate the energy savings in power gating processors, we
predict the GPU power consumption as a linear function of the
number of active cores. For example, if 30 SMs consume total
120W for an application, we assume that each core consumes 4W
when per-core power gating is used. There is no reason to differ-
entiate between Runtime+Idle and Runtime power since the power
gating mechanism eliminates idle power consumption from in-active
cores. Figure 17 shows the predicted amount of energy savings for
the GPU cores that employ power gating. Since power consump-
tion of each individual core is much smaller in a power-gating sys-
tem, the amount of energy savings is much higher than in the cur-
rent NVIDIA GTX280 processors. When power gating is applied,
the average energy savings is 25.85%. Hence, utilizing onlyfewer
cores based on the outcomes of IPP will be more beneficial in fu-
ture per-core power-gating processors.

7. RELATED WORK

7.1 Power Modeling
Isci and Martonosi proposed power modeling using empirical

data [12]. There have been follow-up studies that use similar tech-
niques for other architectures [7]. Wattch [5] has been widely
used to model dynamic power consumption using event counters
from architectural simulations. HotLeakage models leakage cur-
rent and power based on circuit modeling and dynamic events [24].
Skadron et al. proposed temperature aware microarchitecture mod-
eling [20] and also released a software,HotSpot. Both HotLeak-
age and HotSpot require architectural simulators to model dynamic
power consumption. All these studies were done only for CPUs.

Sheaffer et al. studied a thermal management for GPUs [19].
In their work, the GPU was a fixed graphics hardware. Fu et al.
presented experimental data of a GPU system and evaluated the
efficiency of energy and power [8].

Our work is also based on empirical CPU power modeling. The
biggest contribution of our GPU model over the previous CPU
models is that we propose a GPU power model that does not re-
quire performance measurements. By integrating an analytical tim-
ing model and an empirical power model, we are able to predictthe
power consumption of GPGPU workloads with only the instruc-
tion mixture information. We also extend the GPU power model



to model increases in the leakage power consumption over time,
which is becoming a critical component in many-core processors.

7.2 Using Fewer Number of Cores
Huang et al. evaluated the energy efficiency of GPUs for sci-

entific computing [10]. Their work demonstrated the efficiency for
only one benchmark and concluded that using all the cores provides
the best efficiency. They did not consider any bandwidth limitation
effects.

Li and Martinez studied power and performance considerations
for CMPs [14]. They also analytically evaluated the optimalnum-
ber of processors for best power/energy/EDP. However, their work
was focused on CMP and presented heuristics to reduce design
space search using power and performance models.

Suleman et al. proposed a feedback driven threading mecha-
nism [22]. By monitoring the bandwidth consumption using a hard-
ware counter, their feedback system decides how many threads
(cores) can be run without degrading performance. Unlike our
work, it requires runtime profiling to know the minimum number
of threads to reach the peak bandwidth. Furthermore, they demon-
strate power savings through simulation without a detailedpower
model. The IPP system predicts the number of cores that reaches
the peak bandwidth at static time, thereby allowing the compiler or
thread scheduler to use that information without any runtime profil-
ing. Furthermore, we demonstrate the power savings by usingboth
the detailed power model and the real system.

8. CONCLUSIONS
In this paper, we proposed an integrated power and performance

modeling system (IPP) for the GPU architecture and the GPGPU
kernels. IPP extends the empirical CPU modeling mechanism to
model the GPU power and also considers the increases in leakage
power consumption that resulted from the increases in tempera-
ture. Using the proposed power model and the newly-developed
timing model, IPP predicts performance per watt and also theopti-
mal number of cores to achieve energy savings.

The power model using IPP predicts the power consumption and
the execution time with an average of 8.94% error for the evalu-
ated GPGPU kernels. IPP predicts the performance per watt and
the optimal number of cores for the five evaluated bandwidth lim-
ited GPGPU kernels. Based on IPP, the system can save on average
10.99% of runtime energy consumption for the bandwidth limited
applications by using fewer cores. We demonstrated the power sav-
ings in the real machine. We also calculated the power savings
if a per-core power gating mechanism is employed, and the result
shows an average of 25.85% in energy reduction.

The proposed IPP system can be used by a thread scheduler
(power management system) as we have discussed in the paper.It
can be also used by compilers or programmers to optimize program
configurations as we have demonstrated in the paper. In our future
work, we will incorporate dynamic voltage and frequency control
systems in the power and performance model.
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